Flexibility 发表于 2025-3-21 17:59:04

书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0633302<br><br>        <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0633302<br><br>        <br><br>

吼叫 发表于 2025-3-21 20:51:31

http://reply.papertrans.cn/64/6334/633302/633302_2.png

冲突 发表于 2025-3-22 03:33:13

http://reply.papertrans.cn/64/6334/633302/633302_3.png

Concomitant 发表于 2025-3-22 05:34:08

http://reply.papertrans.cn/64/6334/633302/633302_4.png

Oafishness 发表于 2025-3-22 11:11:19

Victor IvriiResearch monograph for researchers and graduate students in Mathematics and Mathematical Physics.Most comprehensive work about the topic.Use of technique, developed by the author during more than 40 y

进入 发表于 2025-3-22 15:36:41

Dirac Operator with the Strong Magnetic Fieldized) Schrödinger-Pauli operators as well. The results and structure of this chapter are similar to those of Chapter 13: Sections 17.1–17.4 and Sections 17.6,17.7 correspond to Sections 13.2–13.5 and Sections 13.6 and 13.8 respectively.

印第安人 发表于 2025-3-22 17:31:03

http://reply.papertrans.cn/64/6334/633302/633302_7.png

是贪求 发表于 2025-3-23 00:38:24

https://doi.org/10.1007/978-3-030-30537-6Microlocal Analysis; Propagation of Singularities; Sharp Spectral Asymptotics; Schrodinger Operator; Gro

生意行为 发表于 2025-3-23 02:41:10

Standard Theory in Dimensions 2 and 3In this chapter we analyze 2- and 3-dimensional Schrödinger operators with the strong magnetic field; now we have not only a small parameter . but a large parameter . (a coupling constant with the magnetic field or simply a magnetic parameter); moreover, a natural condition . arises.

假装是我 发表于 2025-3-23 09:17:12

-Schrödinger Operator with the Strong Degenerating Magnetic FieldIn this chapter we consider .-Schrödinger operator (13.2.1) with the strong magnetic field like in the previous chapter albeit now magnetic intensity . degenerates along smooth line and the degeneration is precisely of order . with .. Surely, we are most interested in the generic case ..
页: [1] 2 3 4
查看完整版本: Titlebook: Microlocal Analysis, Sharp Spectral Asymptotics and Applications III; Magnetic Schrödinger Victor Ivrii Book 2019 Springer Nature Switzerla