Flexibility 发表于 2025-3-21 17:59:04
书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0633302<br><br> <br><br>书目名称Microlocal Analysis, Sharp Spectral Asymptotics and Applications III读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0633302<br><br> <br><br>吼叫 发表于 2025-3-21 20:51:31
http://reply.papertrans.cn/64/6334/633302/633302_2.png冲突 发表于 2025-3-22 03:33:13
http://reply.papertrans.cn/64/6334/633302/633302_3.pngConcomitant 发表于 2025-3-22 05:34:08
http://reply.papertrans.cn/64/6334/633302/633302_4.pngOafishness 发表于 2025-3-22 11:11:19
Victor IvriiResearch monograph for researchers and graduate students in Mathematics and Mathematical Physics.Most comprehensive work about the topic.Use of technique, developed by the author during more than 40 y进入 发表于 2025-3-22 15:36:41
Dirac Operator with the Strong Magnetic Fieldized) Schrödinger-Pauli operators as well. The results and structure of this chapter are similar to those of Chapter 13: Sections 17.1–17.4 and Sections 17.6,17.7 correspond to Sections 13.2–13.5 and Sections 13.6 and 13.8 respectively.印第安人 发表于 2025-3-22 17:31:03
http://reply.papertrans.cn/64/6334/633302/633302_7.png是贪求 发表于 2025-3-23 00:38:24
https://doi.org/10.1007/978-3-030-30537-6Microlocal Analysis; Propagation of Singularities; Sharp Spectral Asymptotics; Schrodinger Operator; Gro生意行为 发表于 2025-3-23 02:41:10
Standard Theory in Dimensions 2 and 3In this chapter we analyze 2- and 3-dimensional Schrödinger operators with the strong magnetic field; now we have not only a small parameter . but a large parameter . (a coupling constant with the magnetic field or simply a magnetic parameter); moreover, a natural condition . arises.假装是我 发表于 2025-3-23 09:17:12
-Schrödinger Operator with the Strong Degenerating Magnetic FieldIn this chapter we consider .-Schrödinger operator (13.2.1) with the strong magnetic field like in the previous chapter albeit now magnetic intensity . degenerates along smooth line and the degeneration is precisely of order . with .. Surely, we are most interested in the generic case ..