Banquet 发表于 2025-3-25 07:15:32
Conormality, Cusps and Non-Linear Interaction,ty containing possibly singular submanifolds, spaces of finitely regular conormal functions. For non-linear problems it is highly desirable that the bounded elements in these spaces form algebras and that they have appropriate solvability properties for certain linear differential operators. This leintricacy 发表于 2025-3-25 11:02:26
http://reply.papertrans.cn/64/6333/633297/633297_22.pngSpangle 发表于 2025-3-25 11:41:29
http://reply.papertrans.cn/64/6333/633297/633297_23.png积习难改 发表于 2025-3-25 19:51:05
http://reply.papertrans.cn/64/6333/633297/633297_24.pngCRUE 发表于 2025-3-25 23:17:50
https://doi.org/10.1007/978-1-4613-9136-4Laplace operator; Microlocal analysis; Oscillation; Smooth function; Volume; behavior; form; hamiltonian sy带子 发表于 2025-3-26 02:29:14
http://reply.papertrans.cn/64/6333/633297/633297_26.pngconceal 发表于 2025-3-26 04:28:42
http://reply.papertrans.cn/64/6333/633297/633297_27.pngarbiter 发表于 2025-3-26 08:50:02
http://reply.papertrans.cn/64/6333/633297/633297_28.pngOVER 发表于 2025-3-26 13:38:26
http://reply.papertrans.cn/64/6333/633297/633297_29.pngJargon 发表于 2025-3-26 19:49:09
Lower Bounds of the Life-Span of Small Classical Solutions for Nonlinear Wave Equations,In a unified and simple way we get lower bounds of the life-span of classical solutions to the Cauchy problem with small initial data for fully nonlinear wave equations of the general form □. = .(., ...) for the space dimension . ≥ 3.