严峻
发表于 2025-3-21 19:51:58
书目名称Metric Structures in Differential Geometry影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0632470<br><br> <br><br>书目名称Metric Structures in Differential Geometry读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0632470<br><br> <br><br>
DIS
发表于 2025-3-21 23:57:08
Characteristic Classes,Let = ∏∏ : . → M denote a rank n bundle over . with connection V and curvature . The Bianchi identity . = 0 from Exercise 94 implies that certain polynomial functions in . are closed differential forms on . and thus represent cohomology classes in .(M, ℝ). These classes are called . of ξ, and turn out to be independent of the choice of connection.
probate
发表于 2025-3-22 01:37:11
Gerard WalschapIncludes supplementary material:
Keratin
发表于 2025-3-22 05:43:39
http://reply.papertrans.cn/64/6325/632470/632470_4.png
和蔼
发表于 2025-3-22 10:05:06
978-1-4419-1913-7Springer Science+Business Media New York 2004
蔓藤图饰
发表于 2025-3-22 16:52:37
http://reply.papertrans.cn/64/6325/632470/632470_6.png
AROMA
发表于 2025-3-22 18:34:29
Fiber Bundles, In this case, each point of . has a neighborhood diffeomorphic to a product . x ℝ., where . is an open set in M. Of course, . itself need not be diffeomorphic to . x R . In most of the sequel, we will be concerned with manifolds that, roughly speaking, look locally like products. As usual, all maps are assumed to be differentiable.
Heart-Attack
发表于 2025-3-22 23:25:30
http://reply.papertrans.cn/64/6325/632470/632470_8.png
Palpable
发表于 2025-3-23 04:17:05
http://reply.papertrans.cn/64/6325/632470/632470_9.png
tooth-decay
发表于 2025-3-23 06:41:59
http://reply.papertrans.cn/64/6325/632470/632470_10.png