果园
发表于 2025-3-21 16:41:44
书目名称Metric Structures for Riemannian and Non-Riemannian Spaces影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0632469<br><br> <br><br>书目名称Metric Structures for Riemannian and Non-Riemannian Spaces读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0632469<br><br> <br><br>
白杨
发表于 2025-3-21 21:51:07
http://reply.papertrans.cn/64/6325/632469/632469_2.png
商议
发表于 2025-3-22 03:33:40
http://reply.papertrans.cn/64/6325/632469/632469_3.png
隐士
发表于 2025-3-22 06:36:38
Length Structures: Path Metric Spaces,introduce the fundamental notions of covariant derivative and curvature (cf. or , Ch. 2), use is made only of the differentiability of . and not of its positivity, as illustrated by Lorentzian geometry in general relativity. By contrast, the concepts of the length of curves in .
surmount
发表于 2025-3-22 08:53:50
http://reply.papertrans.cn/64/6325/632469/632469_5.png
FEAS
发表于 2025-3-22 13:21:10
Morse Theory and Minimal Models,bounded by a disk of area at most .. This definition only makes sense in noncompact manifolds, and we have shown that the 2-dimensional isoperimetric rank of the universal cover of a compact manifold . depends only on the fundamental group .(.).
Anal-Canal
发表于 2025-3-22 18:07:40
http://reply.papertrans.cn/64/6325/632469/632469_7.png
admission
发表于 2025-3-23 00:08:47
http://reply.papertrans.cn/64/6325/632469/632469_8.png
打谷工具
发表于 2025-3-23 04:47:46
http://reply.papertrans.cn/64/6325/632469/632469_9.png
雄伟
发表于 2025-3-23 06:01:52
http://reply.papertrans.cn/64/6325/632469/632469_10.png