契约 发表于 2025-3-21 19:46:25

书目名称Matrix Groups影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0627747<br><br>        <br><br>书目名称Matrix Groups读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0627747<br><br>        <br><br>

Atheroma 发表于 2025-3-21 23:21:26

http://reply.papertrans.cn/63/6278/627747/627747_2.png

CLASP 发表于 2025-3-22 03:17:14

Real and Complex Matrix Groups(the complex numbers), however the general framework of this chapter is applicable to more general fields equipped with suitable norms in place of the absolute value. Indeed, as we will see in Chapter 4, much of it even applies to the case of a general . or ., with the . providing the most important

Adulterate 发表于 2025-3-22 08:21:39

Exponentials, Differential Equations and One-parameter Subgroups theory, particularly the .. Indeed, the . provides the link between the . of a matrix group and the group itself. In the case of a compact connected matrix group, the exponential is even surjective, allowing a parametrisation of such a group by a region in ℝ. for some .; see Chapter 10 for details.

MEN 发表于 2025-3-22 09:42:03

Tangent Spaces and Lie Algebras; the definition and basic properties of Lie algebra are introduced in Section 3.1. Amazingly, the Lie algebra of . captures enough of the properties of . to act as a more manageable substitute for many purposes, at least when . is .. The geometric aspects of this will be studied in Chapter 7 when w

CURB 发表于 2025-3-22 16:46:35

http://reply.papertrans.cn/63/6278/627747/627747_6.png

正式通知 发表于 2025-3-22 18:24:45

Clifford Algebras and Spinor Groups& Shapiro ; Porteous also provides an accessible description, as does Curtis but there are some errors and omissions in that account. Lawson & Michelsohn provides a more sophisticated introduction which shows how central Clifford algebras have become to modern geometry and topol

提升 发表于 2025-3-22 23:32:09

Lorentz Groupsdetails, leaving the reader to fill in the more obvious gaps. The most important example is that for which . = 3 as this provides the geometric setting for Special Relativity. However, many of the main features can be seen in the cases . = 1,2.

先锋派 发表于 2025-3-23 04:49:48

Lie Groups while contain briefer introductions. One of our main aims is to prove that every matrix subgroup of GL.(ℝ) is a . and we follow the proof of this result described in Howe . We will also show that not every Lie group is a matrix group by exhibiting the simplest counterexample.

思想 发表于 2025-3-23 06:46:31

http://reply.papertrans.cn/63/6278/627747/627747_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Matrix Groups; An Introduction to L Andrew Baker Textbook 2002 Springer-Verlag London 2002 Group theory.Lie group.Lie groups.Matrix.Matrix