Perennial长期的 发表于 2025-3-28 17:15:16

http://reply.papertrans.cn/63/6277/627694/627694_41.png

Freeze 发表于 2025-3-28 20:19:04

G. Richtere and cosine series in greater detail. In Section 2.1, we again turn to complex variables, using Laurent’s Theorem and a transformation of Section 1.7.4 to obtain a simple derivation of the Chebyshev polynomials. We thus witness the explicit orthogonality over of integer powers of e. transcen

后来 发表于 2025-3-28 23:23:06

http://reply.papertrans.cn/63/6277/627694/627694_43.png

惊惶 发表于 2025-3-29 06:09:25

http://reply.papertrans.cn/63/6277/627694/627694_44.png

可耕种 发表于 2025-3-29 10:09:39

http://reply.papertrans.cn/63/6277/627694/627694_45.png

凶残 发表于 2025-3-29 15:00:36

http://reply.papertrans.cn/63/6277/627694/627694_46.png

ironic 发表于 2025-3-29 16:06:37

G. Richter solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustratio

自恋 发表于 2025-3-29 22:03:08

G. Richterience, analysis and engineering.Provides numerous ways to tuThis in-depth guide covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstra

指耕作 发表于 2025-3-30 01:23:03

G. Richter solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustratio

圆桶 发表于 2025-3-30 04:58:06

http://reply.papertrans.cn/63/6277/627694/627694_50.png
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Mathematisches Vorsemester; Texte. Ausgabe 1971 G. Richter Textbook 19712nd edition Springer-Verlag Berlin Heidelberg 1971 Abbildungen.Alge