Perennial长期的
发表于 2025-3-28 17:15:16
http://reply.papertrans.cn/63/6277/627694/627694_41.png
Freeze
发表于 2025-3-28 20:19:04
G. Richtere and cosine series in greater detail. In Section 2.1, we again turn to complex variables, using Laurent’s Theorem and a transformation of Section 1.7.4 to obtain a simple derivation of the Chebyshev polynomials. We thus witness the explicit orthogonality over of integer powers of e. transcen
后来
发表于 2025-3-28 23:23:06
http://reply.papertrans.cn/63/6277/627694/627694_43.png
惊惶
发表于 2025-3-29 06:09:25
http://reply.papertrans.cn/63/6277/627694/627694_44.png
可耕种
发表于 2025-3-29 10:09:39
http://reply.papertrans.cn/63/6277/627694/627694_45.png
凶残
发表于 2025-3-29 15:00:36
http://reply.papertrans.cn/63/6277/627694/627694_46.png
ironic
发表于 2025-3-29 16:06:37
G. Richter solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustratio
自恋
发表于 2025-3-29 22:03:08
G. Richterience, analysis and engineering.Provides numerous ways to tuThis in-depth guide covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstra
指耕作
发表于 2025-3-30 01:23:03
G. Richter solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustratio
圆桶
发表于 2025-3-30 04:58:06
http://reply.papertrans.cn/63/6277/627694/627694_50.png