Perennial长期的 发表于 2025-3-28 17:15:16
http://reply.papertrans.cn/63/6277/627694/627694_41.pngFreeze 发表于 2025-3-28 20:19:04
G. Richtere and cosine series in greater detail. In Section 2.1, we again turn to complex variables, using Laurent’s Theorem and a transformation of Section 1.7.4 to obtain a simple derivation of the Chebyshev polynomials. We thus witness the explicit orthogonality over of integer powers of e. transcen后来 发表于 2025-3-28 23:23:06
http://reply.papertrans.cn/63/6277/627694/627694_43.png惊惶 发表于 2025-3-29 06:09:25
http://reply.papertrans.cn/63/6277/627694/627694_44.png可耕种 发表于 2025-3-29 10:09:39
http://reply.papertrans.cn/63/6277/627694/627694_45.png凶残 发表于 2025-3-29 15:00:36
http://reply.papertrans.cn/63/6277/627694/627694_46.pngironic 发表于 2025-3-29 16:06:37
G. Richter solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustratio自恋 发表于 2025-3-29 22:03:08
G. Richterience, analysis and engineering.Provides numerous ways to tuThis in-depth guide covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstra指耕作 发表于 2025-3-30 01:23:03
G. Richter solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustratio圆桶 发表于 2025-3-30 04:58:06
http://reply.papertrans.cn/63/6277/627694/627694_50.png