Tyler 发表于 2025-3-21 17:10:09
书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0626607<br><br> <br><br>书目名称Mathematical Structures of Ergodicity and Chaos in Population Dynamics读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0626607<br><br> <br><br>Lasting 发表于 2025-3-21 23:20:25
Chaos and Ergodic Theory,4; Devaney 1987; Bronsztejn et al. 2004). In this book, we will be interested particularly in the approach where chaos is studied using ergodic theory tools (Lasota 1979; Rudnicki 1985a, 2009, 2004; Dawidowicz 1992a). The moment when L. Boltzmann formulated the ergodic hypothesis can probably be conFriction 发表于 2025-3-22 03:27:05
http://reply.papertrans.cn/63/6267/626607/626607_3.png胶水 发表于 2025-3-22 07:17:30
Lasota Equation with Unimodal Regulation,haracter (see e.g., Ważewska-Czyżewska 1983; Mackey and Milton 1990). In some cases, it may demonstrate non-monotonic character, or in other words it may be described by a function with one smooth maximum for arguments greater than zero. Such functions are called unimodal (see e.g., Röst and Wu 2007突变 发表于 2025-3-22 11:04:58
trategic progress on certain assumptions for the future. In order to prepare for various developments of the future, it is reasonable to consider different possible scenarios while building a future vision. Thus, this chapter focuses on the methodological approach for the generation of future scenar全等 发表于 2025-3-22 16:15:11
http://reply.papertrans.cn/63/6267/626607/626607_6.png蛛丝 发表于 2025-3-22 21:07:51
http://reply.papertrans.cn/63/6267/626607/626607_7.pngBACLE 发表于 2025-3-22 23:26:31
http://reply.papertrans.cn/63/6267/626607/626607_8.png允许 发表于 2025-3-23 04:45:46
verged architecture supporting multimedia services. Extending the IMS towards provisioning support for location based services (LBS) will enable enhanced services and offer new revenues to the system. However, conveying location information in the IMS and connecting the IMS with a real positioning sRECUR 发表于 2025-3-23 07:56:20
https://doi.org/10.1007/978-3-030-57678-3Ergodicity; Chaos; Population Dynamics; Nonlinear Dynamics; Lasota-Wazewska Equation