tricuspid-valve 发表于 2025-3-21 16:43:14
书目名称Mathematical Optimization Theory and Operations Research影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0626486<br><br> <br><br>书目名称Mathematical Optimization Theory and Operations Research读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0626486<br><br> <br><br>GEST 发表于 2025-3-21 20:30:16
Communications in Computer and Information Sciencehttp://image.papertrans.cn/m/image/626486.jpg类似思想 发表于 2025-3-22 03:50:38
http://reply.papertrans.cn/63/6265/626486/626486_3.pngeffrontery 发表于 2025-3-22 08:13:41
978-3-030-58656-0Springer Nature Switzerland AG 2020背心 发表于 2025-3-22 12:13:06
http://reply.papertrans.cn/63/6265/626486/626486_5.pngpenance 发表于 2025-3-22 16:22:41
http://reply.papertrans.cn/63/6265/626486/626486_6.pngarchenemy 发表于 2025-3-22 19:04:20
A 0.3622-Approximation Algorithm for the Maximum k-Edge-Colored Clustering Problemf their endpoints. The problem was introduced by Angel et al.[.]. In this paper we give a polynomial-time algorithm for MAX-k-EC with an approximation factor . which significantly improves the best previously known approximation bound . established by Alhamdan and Kononov[.].Invertebrate 发表于 2025-3-23 00:00:07
On a Solving Bilevel D.C.-Convex Optimization Problemshe well-known Karush-Kuhn-Tucker approach. Then we employ the novel Global Search Theory and Exact Penalty Theory to solve the resulting nonconvex optimization problem. Following this theory, the special method of local search in this problem is constructed. This method takes into account the structure of the problem in question.Coronary 发表于 2025-3-23 04:37:58
http://reply.papertrans.cn/63/6265/626486/626486_9.pngbiosphere 发表于 2025-3-23 09:24:03
http://reply.papertrans.cn/63/6265/626486/626486_10.png