强烈兴趣 发表于 2025-3-21 17:01:29

书目名称Markov Chains with Stationary Transition Probabilities影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0624622<br><br>        <br><br>书目名称Markov Chains with Stationary Transition Probabilities读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0624622<br><br>        <br><br>

BLAZE 发表于 2025-3-21 22:22:14

http://reply.papertrans.cn/63/6247/624622/624622_2.png

Infantry 发表于 2025-3-22 04:24:12

http://reply.papertrans.cn/63/6247/624622/624622_3.png

小官 发表于 2025-3-22 06:26:23

http://reply.papertrans.cn/63/6247/624622/624622_4.png

Projection 发表于 2025-3-22 09:15:47

http://reply.papertrans.cn/63/6247/624622/624622_5.png

蛰伏 发表于 2025-3-22 15:44:22

Criteria and examplesWe start with an elementary lemma which will be useful on several occasions. Although it is but one half of the well known theorem on the regularity of Nörlund means we give its proof here.

FAR 发表于 2025-3-22 20:54:03

The main limit theoremWe shall give in this section a complete determination of the limit or limits of . as . → ∞, for every . and .. If . is nonrecurrent it follows already from the Corollary to Theorem 5.5 that .

FRAUD 发表于 2025-3-22 22:40:00

Various complementsThe quantities π. defined in §6 satisfy a certain system of linear homogeneous equations. This . is not only of theoretical importance but furnishes a practical way of computing these quantities.

退潮 发表于 2025-3-23 04:04:47

Repetitive pattern and renewal processThis section is a digression. Its purpose is to establish the equivalence of several notions in current usage.

WAIL 发表于 2025-3-23 06:36:51

Taboo probabilitiesFor a deeper study of the M. C. {., . ≧ 0} we now introduce .. Let . be an arbitrary set of states. We define
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Markov Chains with Stationary Transition Probabilities; Kai Lai Chung Textbook 1960 Springer-Verlag Berlin Heidelberg 1960 Markov chain.Ma