champaign 发表于 2025-3-23 12:11:18
http://reply.papertrans.cn/63/6239/623832/623832_11.pngGustatory 发表于 2025-3-23 15:40:34
Kichi-Suke Saitoch miteinander zusammenhängen, daß bei allen der Begriff des Stoßes eine Rolle spielt. Es erscheint wünschenswert, eine vereinigende Darstellung dieses ganzen Fragengebietes zu besitzen. Den Ausgangspunkt bilden jene Probleme, die der gewöhnlichen oder „klassischen“ Theorie des Stoßes fester Körper跟随 发表于 2025-3-23 22:00:59
http://reply.papertrans.cn/63/6239/623832/623832_13.png小口啜饮 发表于 2025-3-24 01:46:06
http://reply.papertrans.cn/63/6239/623832/623832_14.pngLANCE 发表于 2025-3-24 04:40:55
Representation of Quantum Groups,ther hand, Woronowicz introduced the concept of compact matrix pseudogroups through the study of the dual object of groups. As pointed out by Rosso in , these two concepts are related to each other as quantum Lie algebras and quantum Lie groups. In this talk we want to indicate that the ideaCirrhosis 发表于 2025-3-24 09:24:12
Automorphism Groups and Covariant Irreducible Representations,ly compact group, and α is a continuous action of . on . by automorphisms with α * being the transposed action on Â. In other words, I would like to interpret the non-commutative system (.,.,α) in terms of the commutative-like system (Â,.,α*). As this is still too general a problem, my main concernIncise 发表于 2025-3-24 12:34:17
http://reply.papertrans.cn/63/6239/623832/623832_17.pngatopic 发表于 2025-3-24 18:06:20
http://reply.papertrans.cn/63/6239/623832/623832_18.pngJECT 发表于 2025-3-24 22:48:14
On Primitive Ideal Spaces of C*-Algebras over Certain Locally Compact Groupoids, with Fell’s algebraic bundles over groups, we define the notion of .*-algebras over F and, given a .*-algebra . over Γ, we can form a .*-algebra .*(Γ, .) as the completion of the cross sectional algebra of .. In this note, under some stringent assumptions on Γ, we present a concrete realization of显微镜 发表于 2025-3-24 23:32:30
,The Powers’ Binary Shifts on the Hyperfinite Factor of Type II1, adjoint unitary . such that . = {σ.(.); . ∈ IN ∪ {0}}″ and σ.(.). = ±.σ.(.) for . ∈ IN ∪ {0}. Let .(σ) be the number min{. ∈ IN; σ.(.)∲ ∩. = ℂ.}. It is shown that the number .(σ) is not the complete outer conjugacy invariant for a Powers’ binary shift.