incoherent
发表于 2025-3-21 16:45:41
书目名称Map Color Theorem影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0623713<br><br> <br><br>书目名称Map Color Theorem读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0623713<br><br> <br><br>
EWER
发表于 2025-3-21 21:47:34
http://reply.papertrans.cn/63/6238/623713/623713_2.png
顽固
发表于 2025-3-22 00:37:06
http://reply.papertrans.cn/63/6238/623713/623713_3.png
Amnesty
发表于 2025-3-22 07:58:52
Graph Theory,Proper formulation of the map Color Problem and the Thread Problem and their solution requires some graph theoretical preparations.
Obliterate
发表于 2025-3-22 09:06:19
Classification of Surfaces,In this chapter we will present material that is well known; however we need not only the results, but also parts of the proofs as we shall see in later chapters. For more details of this theory see H. Seifert and Threlfall or M. Fréchet and Ky Fan .
解开
发表于 2025-3-22 13:16:23
http://reply.papertrans.cn/63/6238/623713/623713_6.png
迎合
发表于 2025-3-22 17:02:30
Orientable Cases 1, 4, and 9,Now we will construct a triangular embedding of .. into an orientable surface for each . of the form .= 12.+ 4.
irreparable
发表于 2025-3-22 21:24:24
http://reply.papertrans.cn/63/6238/623713/623713_8.png
出来
发表于 2025-3-23 02:54:06
Non-Orientable Cases (Index 1),It is our intention to determine the non-orientable genus of .. which means to prove formula (4.19). For . ≦ 8 this was already done in Sections 4.6 and 5.1.
epidermis
发表于 2025-3-23 07:03:55
Solutions of Index 2 and 3,Each of the current graphs we used in the previous chapters has the property that the given rotation induces . single circuit. The log of the circuit provides row 0 and all the other rows are determined by the additive rule (or for the extra rows (as row ., etc.) by Rule .*). We say row 0 . the whole scheme and the solution is of . 1.