粘上 发表于 2025-3-21 18:58:01

书目名称Manifolds all of whose Geodesics are Closed影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0623389<br><br>        <br><br>书目名称Manifolds all of whose Geodesics are Closed读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0623389<br><br>        <br><br>

overshadow 发表于 2025-3-21 21:23:09

Sturm-Liouville Equations all of whose Solutions are Periodic, after F. Neuman,, in particular, that they depend on an almost arbitrary function)..In B.IV we come back to geometry and among the examples we previously exhibited select the once which we can describe geometrically. We establish an inequality for the integral of the curvature along geodesic. This gives a slightly

责难 发表于 2025-3-22 00:35:49

The Manifold of Geodesics,red in two ways over . and ., we prove A. Weinstein’s theorem..Then we discuss some Riemannian metrics which can be naturally defined on .., especially the metrics ḡ. and ḡ. which are respectively of Sobolev type . and .. We study in detail the geodesies of ḡ. together with its connection and curvature.

忧伤 发表于 2025-3-22 04:32:55

http://reply.papertrans.cn/63/6234/623389/623389_4.png

不自然 发表于 2025-3-22 09:43:04

The Spectrum of ,-Manifolds, in Section F)..In Section G we give a result of A. Weinstein which applies to the spectra of Zoll surfaces..Finally, in Section H we give some results on the first nonzero eigenvalue of the Laplace operator on Blaschke manifolds.

archaeology 发表于 2025-3-22 16:09:56

http://reply.papertrans.cn/63/6234/623389/623389_6.png

hemoglobin 发表于 2025-3-22 17:03:28

978-3-642-61878-9Springer-Verlag Berlin Heidelberg 1978

Notify 发表于 2025-3-22 22:09:12

Overview: 978-3-642-61878-9978-3-642-61876-5

浪荡子 发表于 2025-3-23 02:55:50

http://reply.papertrans.cn/63/6234/623389/623389_9.png

Epithelium 发表于 2025-3-23 08:03:39

http://reply.papertrans.cn/63/6234/623389/623389_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Manifolds all of whose Geodesics are Closed; Arthur L. Besse Book 1978 Springer-Verlag Berlin Heidelberg 1978 Geodätische Linie.Manifolds.