EXTRA 发表于 2025-3-21 19:01:00

书目名称Manifold Learning影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0623388<br><br>        <br><br>书目名称Manifold Learning读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0623388<br><br>        <br><br>

opprobrious 发表于 2025-3-21 20:59:01

Resources: Software and Tutorials,dustrial usage”. It is the name of a collaborative project that took place from 2018 to 2023, with the objective of developing a standard for a datamodel and basic computational treatment for reduced-order modeling in the French community.

单独 发表于 2025-3-22 02:31:05

Industrial Application: Uncertainty Quantification in Lifetime Prediction of Turbine Blades,turbine blades, generated by the uncertainty of the temperature loading field. A complete reduced-order model workflow is detailed, and the numerical experiments make use of the codes Mordicus and genericROM introduced in Chap. 4.

商店街 发表于 2025-3-22 04:55:10

http://reply.papertrans.cn/63/6234/623388/623388_4.png

Spinous-Process 发表于 2025-3-22 11:40:10

http://reply.papertrans.cn/63/6234/623388/623388_5.png

IVORY 发表于 2025-3-22 15:29:41

https://doi.org/10.1007/978-3-031-52764-7Computational Mechanics; Data Augmentation; Deep Learning; Digital Twining; Dimensionality Reduction; Gen

伴随而来 发表于 2025-3-22 20:41:43

http://reply.papertrans.cn/63/6234/623388/623388_7.png

tympanometry 发表于 2025-3-22 21:14:11

Manifold Learning978-3-031-52764-7Series ISSN 2191-5768 Series E-ISSN 2191-5776

丛林 发表于 2025-3-23 03:17:23

Book‘‘‘‘‘‘‘‘ 2024 to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning alg

Aerate 发表于 2025-3-23 05:55:43

Learning Projection-Based Reduced-Order Models,the generalisation of the reduced order model is evaluated in the online step by using a test set of data forecast by the high-fidelity model. The test set aims also to check the computational speedups of the reduced-order model compare to the high-fidelity model.
页: [1] 2 3 4
查看完整版本: Titlebook: Manifold Learning; Model Reduction in E David Ryckelynck,Fabien Casenave,Nissrine Akkari Book‘‘‘‘‘‘‘‘ 2024 The Editor(s) (if applicable) an