誓约 发表于 2025-3-21 19:39:40
书目名称Malliavin Calculus and Stochastic Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0621998<br><br> <br><br>书目名称Malliavin Calculus and Stochastic Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0621998<br><br> <br><br>胆小鬼 发表于 2025-3-21 21:57:19
http://reply.papertrans.cn/63/6220/621998/621998_2.pngAltitude 发表于 2025-3-22 03:58:44
http://reply.papertrans.cn/63/6220/621998/621998_3.pngANNUL 发表于 2025-3-22 08:24:48
The Calculus of Differentials for the Weak Stratonovich Integralweak Stratonovich integral of .(.) with respect to .(.), where . is a fractional Brownian motion with Hurst parameter 1/6, and . and . are smooth functions. We use this expression to derive an Itô-type formula for this integral. As in the case where . is the identity, the Itô-type formula has a corrCLASH 发表于 2025-3-22 11:10:05
http://reply.papertrans.cn/63/6220/621998/621998_5.pngADORN 发表于 2025-3-22 13:57:53
http://reply.papertrans.cn/63/6220/621998/621998_6.png残忍 发表于 2025-3-22 17:53:53
http://reply.papertrans.cn/63/6220/621998/621998_7.png航海太平洋 发表于 2025-3-22 23:23:55
Intermittency and Chaos for a Nonlinear Stochastic Wave Equation in Dimension 1n use those intermittency results in order to demonstrate that in many cases the solution is chaotic. For the most part, the novel portion of our work is about the two cases where (1) the initial conditions have compact support, where the global maximum of the solution remains bounded, and (2) the iFACET 发表于 2025-3-23 01:39:22
Generalized Stochastic Heat Equationsrrelated in space, and where the diffusion operator is the inverse of a Riesz potential for any positive fractional parameter. We prove the existence and uniqueness of solution and the Hölder continuity of this solution. In time, Hölder’s parameter does not depend on the fractional parameter. Howeve兵团 发表于 2025-3-23 07:53:59
Gaussian Upper Density Estimates for Spatially Homogeneous SPDEsn the coefficients and the spectral measure associated to the noise ensuring that the density of the corresponding mild solution admits an upper estimate of Gaussian type. The proof is based on the formula for the density arising from the integration-by-parts formula of the Malliavin calculus. Our r