次要 发表于 2025-3-21 16:59:30

书目名称Machine Learning in Medical Imaging影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0620681<br><br>        <br><br>书目名称Machine Learning in Medical Imaging读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0620681<br><br>        <br><br>

爱了吗 发表于 2025-3-21 23:46:27

http://reply.papertrans.cn/63/6207/620681/620681_2.png

hypertension 发表于 2025-3-22 02:41:45

978-3-031-45675-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl

收到 发表于 2025-3-22 05:40:28

http://reply.papertrans.cn/63/6207/620681/620681_4.png

Embolic-Stroke 发表于 2025-3-22 09:59:11

http://reply.papertrans.cn/63/6207/620681/620681_5.png

Outspoken 发表于 2025-3-22 14:19:05

http://reply.papertrans.cn/63/6207/620681/620681_6.png

西瓜 发表于 2025-3-22 19:47:06

http://reply.papertrans.cn/63/6207/620681/620681_7.png

方舟 发表于 2025-3-22 21:28:29

,Identifying Alzheimer’s Disease-Induced Topology Alterations in Structural Networks Using Convoluti (AD). However, conventional graph learning methods struggle to accurately represent the subtle and heterogeneous topology alterations caused by AD, leading to marginal classification accuracy. In this study, we address this issue through a two-fold approach. Firstly, to more reliably capture AD-ind

和平 发表于 2025-3-23 04:58:00

,Specificity-Aware Federated Graph Learning for Brain Disorder Analysis with Functional MRI,by brain disorders. Graph neural network (GNN) has been widely used for fMRI representation learning and brain disorder analysis, thanks to its potent graph representation abilities. Training a generalizable GNN model often requires large-scale subjects from different medical centers/sites, but the

惊奇 发表于 2025-3-23 08:45:50

http://reply.papertrans.cn/63/6207/620681/620681_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Machine Learning in Medical Imaging; 14th International W Xiaohuan Cao,Xuanang Xu,Xi Ouyang Conference proceedings 2024 The Editor(s) (if a