离开浮于空中 发表于 2025-3-21 19:29:29
书目名称Machine Learning for Cybersecurity影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0620609<br><br> <br><br>书目名称Machine Learning for Cybersecurity读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0620609<br><br> <br><br>微粒 发表于 2025-3-21 23:29:23
New Approach to Malware Detection Using Optimized Convolutional Neural Network, and effectively detect malware with high precision. This paper is different than most other papers in the literature in that it uses an expert data science approach by developing a convolutional neural network from scratch to establish a baseline of the performance model first, explores and implemeSOBER 发表于 2025-3-22 01:28:31
http://reply.papertrans.cn/63/6207/620609/620609_3.pngSciatica 发表于 2025-3-22 08:11:01
Book 2022olve certain challenges facing the cybersecurity industry..By implementing innovative deep learning solutions, cybersecurity researchers, students and practitioners can analyze patterns and learn how to prevent cyber-attacks and respond to changing malware behavior. .The knowledge and tools introducfringe 发表于 2025-3-22 11:18:20
Malware Anomaly Detection Using Local Outlier Factor Technique,ectiveness of our technique on real-world datasets. This is an efficient technique for malware detection as the model trained for this purpose is based on unsupervised learning. The model trains on the anomalies, that is, the unusual behavior in a process, making it significantly effective.时代 发表于 2025-3-22 15:33:54
Application of Machine Learning (ML) to Address Cybersecurity Threats,various problem domains in cybersecurity. To achieve this objective, a rapid evidence assessment (REA) of existing scholarly literature on the subject matter is adopted. The aim is to present a snapshot of the various ways ML is being applied to help address cybersecurity threat challenges.lipoatrophy 发表于 2025-3-22 19:22:14
http://reply.papertrans.cn/63/6207/620609/620609_7.pngDistribution 发表于 2025-3-23 00:00:35
Application of Machine Learning (ML) to Address Cybersecurity Threats,s has prompted the use of machine learning (hereafter, ML) to help address the problem. But as organizations increasingly use intelligent cybersecurity techniques, the overall efficacy and benefit analysis of these ML-based digital security systems remain a subject of increasing scholarly inquiry. Tcarbohydrate 发表于 2025-3-23 05:12:29
http://reply.papertrans.cn/63/6207/620609/620609_9.pngAVOW 发表于 2025-3-23 08:50:06
http://reply.papertrans.cn/63/6207/620609/620609_10.png