detumescence 发表于 2025-3-21 19:58:06

书目名称Machine Learning and Knowledge Discovery in Databases. Research Track影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0620543<br><br>        <br><br>书目名称Machine Learning and Knowledge Discovery in Databases. Research Track读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0620543<br><br>        <br><br>

音乐等 发表于 2025-3-21 21:36:23

http://reply.papertrans.cn/63/6206/620543/620543_2.png

Asparagus 发表于 2025-3-22 03:48:42

http://reply.papertrans.cn/63/6206/620543/620543_3.png

amygdala 发表于 2025-3-22 06:42:53

Joslim: ,oint Widths and Weights ,ptimization for ,mable Neural Networks. From a practical standpoint, we propose Joslim, an algorithm that jointly optimizes both the widths and weights for slimmable nets, which outperforms existing methods for optimizing slimmable networks across various networks, datasets, and objectives. Quantitatively, improvements up to 1.7% and 8%

triptans 发表于 2025-3-22 09:45:32

http://reply.papertrans.cn/63/6206/620543/620543_5.png

lavish 发表于 2025-3-22 15:41:26

http://reply.papertrans.cn/63/6206/620543/620543_6.png

cravat 发表于 2025-3-22 20:08:06

http://reply.papertrans.cn/63/6206/620543/620543_7.png

讲个故事逗他 发表于 2025-3-22 21:45:45

Variance Reduced Stochastic Proximal Algorithm for AUC Maximization Variance Reduced Stochastic Proximal algorithm for AUC Maximization (.) that combines the two areas of analyzing non-decomposable performance metrics with and optimization efforts to guarantee faster convergence. We perform an in-depth theoretical and empirical analysis to demonstrate that our algo

Interregnum 发表于 2025-3-23 01:50:57

More General and Effective Model Compression via an Additive Combination of Compressionsusing only 1 bit per weight without error degradation at the cost of adding a few floating point weights. However, VGG nets can be better compressed by combining low-rank with a few floating point weights.

拥护者 发表于 2025-3-23 05:36:54

http://reply.papertrans.cn/63/6206/620543/620543_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Nuria Oliver,Fernando Pérez-Cruz,Jose A. Lozano