易怒 发表于 2025-3-23 11:11:37
http://reply.papertrans.cn/63/6206/620531/620531_11.pngMisnomer 发表于 2025-3-23 17:56:23
Taking over the Stock Market: Adversarial Perturbations Against Algorithmic Traderst three different trading algorithms. We show that when added to the input stream, our perturbation can fool the trading algorithms at future unseen data points, in both white-box and black-box settings. Finally, we present various mitigation methods and discuss their limitations, which stem from thRestenosis 发表于 2025-3-23 19:31:38
Continuous-Action Reinforcement Learning for Portfolio Allocation of a Life Insurance Companytic model that combines portfolio returns with the liabilities generated by the insurance products offered by the company. Furthermore, we propose a risk-adjusted optimization problem to maximize the capital of the company over a pre-determined time horizon..Since traditional financial tools are inaWATER 发表于 2025-3-23 22:13:10
http://reply.papertrans.cn/63/6206/620531/620531_14.png过份艳丽 发表于 2025-3-24 05:16:03
Jingzhu He,Chin-Chia Michael Yeh,Yanhong Wu,Liang Wang,Wei Zhangesondere in der Abschlussphase. Herrn Prof. Dr. Peter Hecheltjen danke ich für die Übernahme des Prüfungsvorsitzes bei der Disputation. Gedankt sei überdies den Verantwortlichen des 978-3-531-15819-8978-3-531-90975-2粗糙 发表于 2025-3-24 09:55:29
http://reply.papertrans.cn/63/6206/620531/620531_16.png排名真古怪 发表于 2025-3-24 11:03:42
http://reply.papertrans.cn/63/6206/620531/620531_17.png没血色 发表于 2025-3-24 17:48:46
Damien Fourure,Muhammad Usama Javaid,Nicolas Posocco,Simon Tihonank Huysmans (Universität Amsterdam) für seine Tätigkeit als Zweitgutachter, ferner für konstruktive Anmerkungen, insbesondere in der Abschlussphase. Herrn Prof. Dr. Peter Hecheltjen danke ich für die Übernahme des Prüfungsvorsitzes bei der Disputation. Gedankt sei überdies den Verantwortlichen des少量 发表于 2025-3-24 21:42:33
http://reply.papertrans.cn/63/6206/620531/620531_19.pngANTH 发表于 2025-3-25 01:24:49
Paul Prasse,Jan Brabec,Jan Kohout,Martin Kopp,Lukas Bajer,Tobias Schefferation. Our solution is founded based on the thriving nn-UNet architecture. Firstly, by extending the channel size, we propose a larger network, which can provide a broader perspective, facilitating the extraction of complex structural information. Secondly, we include an axial attention catching(AAC