FARCE 发表于 2025-3-21 16:54:29
书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0620463<br><br> <br><br>书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0620463<br><br> <br><br>逃避责任 发表于 2025-3-21 22:14:40
Machine Learning and Data Mining in Pattern Recognition978-3-540-44596-8Series ISSN 0302-9743 Series E-ISSN 1611-3349scrutiny 发表于 2025-3-22 02:20:32
https://doi.org/10.1007/3-540-44596-XAlgorithmic Learning; Classification; Clustering; Data Mining; Handwriting Recognition; Information Retri洞穴 发表于 2025-3-22 06:44:42
http://reply.papertrans.cn/63/6205/620463/620463_4.pngMEET 发表于 2025-3-22 12:00:59
http://reply.papertrans.cn/63/6205/620463/620463_5.png控制 发表于 2025-3-22 15:06:25
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620463.jpg祖传财产 发表于 2025-3-22 19:26:58
Concepts Learning with Fuzzy Clustering and Relevance Feedbackzzy rules, we incorporate the meta knowledge into a probabilistic relevance feedback approach to improve the retrieval performance. Results presented on synthetic and real databases show that our approach provides better retrieval precision compared to the case when no retrieval experience is used.Modicum 发表于 2025-3-23 00:56:56
0302-9743Data Mining in Pattern Recognition, MLDM 2001, held in Leipzig, Germany in July 2001..The 26 revised full papers presented together with two invited papers were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections on case-based reasoning and皮萨 发表于 2025-3-23 02:34:08
http://reply.papertrans.cn/63/6205/620463/620463_9.pngIndelible 发表于 2025-3-23 09:33:03
http://reply.papertrans.cn/63/6205/620463/620463_10.png