Inveigle 发表于 2025-3-21 19:16:57

书目名称Machine Learning Meets Quantum Physics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0620402<br><br>        <br><br>书目名称Machine Learning Meets Quantum Physics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0620402<br><br>        <br><br>

眉毛 发表于 2025-3-21 20:32:15

http://reply.papertrans.cn/63/6205/620402/620402_2.png

octogenarian 发表于 2025-3-22 02:37:55

Accurate Molecular Dynamics Enabled by Efficient Physically Constrained Machine Learning Approachesmmetric variant of our model. The symmetric GDML (sGDML) approach is able to faithfully reproduce global force fields at the accuracy high-level ab initio methods, thus enabling sample intensive tasks like molecular dynamics simulations at that level of accuracy. (This chapter is adapted with permis

esthetician 发表于 2025-3-22 06:05:52

Quantum Machine Learning with Response Operators in Chemical Compound Spaces by including the corresponding operators in the regression (Christensen et al., J Chem Phys 150(6):064105, 2019). FCHL18 was designed to describe an atom in its chemical environment, allowing to measure distances between elements in the periodic table, and consequently providing a metric for both

Aggressive 发表于 2025-3-22 10:04:48

Physical Extrapolation of Quantum Observables by Generalization with Gaussian Processesons. The approach is based on training Gaussian process models of variable complexity by the evolution of the physical functions. We show that, as the complexity of the models increases, they become capable of predicting new transitions. We also show that, where the evolution of the physical functio

出生 发表于 2025-3-22 13:43:04

Molecular Dynamics with Neural Network Potentialsmodel for simulating molecular dipole moments in the framework of predicting infrared spectra via molecular dynamics simulations. Finally, we show that machine learning models can offer valuable aid in understanding chemical systems beyond a simple prediction of quantities.

饮料 发表于 2025-3-22 19:52:44

Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemicte that the flexible nature of the sGDML framework captures local and non-local electronic interactions (e.g., H-bonding, lone pairs, steric repulsion, changes in hybridization states (e.g., .), . → .. interactions, and proton transfer) without imposing any restriction on the nature of interatomic p

FRAUD 发表于 2025-3-23 01:12:45

http://reply.papertrans.cn/63/6205/620402/620402_8.png

TATE 发表于 2025-3-23 04:20:21

http://reply.papertrans.cn/63/6205/620402/620402_9.png

Acetaldehyde 发表于 2025-3-23 07:51:47

http://reply.papertrans.cn/63/6205/620402/620402_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Machine Learning Meets Quantum Physics; Kristof T. Schütt,Stefan Chmiela,Klaus-Robert Müll Book 2020 The Editor(s) (if applicable) and The