CLAST 发表于 2025-3-21 18:34:51
书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0620385<br><br> <br><br>书目名称Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0620385<br><br> <br><br>弄皱 发表于 2025-3-21 20:46:29
978-3-031-54607-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature SwitzerlNEG 发表于 2025-3-22 02:15:12
http://reply.papertrans.cn/63/6204/620385/620385_3.pngclimax 发表于 2025-3-22 08:15:24
Vitor Joao Pereira Domingues MartinhoShows how to identify the crucial variables needed to solve agricultural production unit management challenges.Contains many tables and diagrams to illustrate the book‘s message.Useful to students, pu河流 发表于 2025-3-22 09:44:24
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/m/image/620385.jpgJEER 发表于 2025-3-22 14:20:26
Book 2024ging production units and designing agriculture policies. The book focuses on the agricultural sector in the European Union and considers statistical information from the Farm Accountancy Data Network (FADN)..Presently, statistical databases present a lot of information for many indicators and, in t针叶 发表于 2025-3-22 17:50:05
Predictive Machine Learning Approaches to Agricultural Output, European Union farming output, taking into account machine learning approaches and statistical information from the Farm Accountancy Data Network. The results obtained highlight the most important farming variables that must be taken into account to predict the total output in the European Union farms.你敢命令 发表于 2025-3-22 23:22:27
Applying Artificial Intelligence to Predict Crop Output, Network were considered, as well as approaches associated with artificial intelligence. The main findings provide relevant insights and knowledge, namely for farmers and policymakers that may be considered in the processes of agricultural planning, management and policy design.FOLLY 发表于 2025-3-23 01:22:29
Predictive Machine Learning Models for Livestock Output, to suggest models and predictors to support the farmers and other stakeholders to better design policies and farm plans. Statistical information from the European Union databases was considered. The results found are useful tools to improve the performance of the European Union farms, particularly those specialised in livestock production.epidermis 发表于 2025-3-23 06:04:56
http://reply.papertrans.cn/63/6204/620385/620385_10.png