hedonist 发表于 2025-3-21 17:53:53
书目名称MICAI 2008: Advances in Artificial Intelligence影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0620163<br><br> <br><br>书目名称MICAI 2008: Advances in Artificial Intelligence读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0620163<br><br> <br><br>barium-study 发表于 2025-3-21 22:03:05
MICAI 2008: Advances in Artificial Intelligence978-3-540-88636-5Series ISSN 0302-9743 Series E-ISSN 1611-3349rheumatology 发表于 2025-3-22 01:46:21
http://reply.papertrans.cn/63/6202/620163/620163_3.pngbrachial-plexus 发表于 2025-3-22 06:01:54
http://reply.papertrans.cn/63/6202/620163/620163_4.png空中 发表于 2025-3-22 12:18:03
http://reply.papertrans.cn/63/6202/620163/620163_5.pngorient 发表于 2025-3-22 16:29:57
http://reply.papertrans.cn/63/6202/620163/620163_6.pngLimerick 发表于 2025-3-22 19:08:44
http://reply.papertrans.cn/63/6202/620163/620163_7.pngflourish 发表于 2025-3-22 22:16:57
http://reply.papertrans.cn/63/6202/620163/620163_8.pngSinus-Rhythm 发表于 2025-3-23 04:04:19
Luca Pulina,Armando Tacchella methods of summability, focusing particularly on Fejér and .This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejér and Cesàro summability, as well as theta-summation, readers will become more familiar with a wiNOMAD 发表于 2025-3-23 09:17:59
Daniel Lopez-Escogido,Jose Torres-Jimenez,Eduardo Rodriguez-Tello,Nelson Rangel-Valdez methods of summability, focusing particularly on Fejér and .This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejér and Cesàro summability, as well as theta-summation, readers will become more familiar with a wi