Deleterious
发表于 2025-3-21 18:03:33
书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0589176<br><br> <br><br>书目名称Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0589176<br><br> <br><br>
impaction
发表于 2025-3-21 23:05:48
,Steady-State Solutions of the Vlasov—Maxwell System,ifficult and has only been considered in simplified cases (see Abdallah , Guo , Degond ). Its reduction to the boundary value problem for a system of nonlinear elliptic equations in some cases allows us to show a solvability that is difficult to understand for the initial statement of problem.
珠宝
发表于 2025-3-22 04:26:43
978-90-481-6150-8Springer Science+Business Media Dordrecht 2002
知识
发表于 2025-3-22 05:05:11
Overview: 978-90-481-6150-8978-94-017-2122-6
Custodian
发表于 2025-3-22 09:16:23
https://doi.org/10.1007/978-94-017-2122-6Boundary value problem; Mathematica; algorithm; algorithms; calculus; mechanics; operator; partial differen
不愿
发表于 2025-3-22 15:16:24
http://reply.papertrans.cn/59/5892/589176/589176_6.png
昆虫
发表于 2025-3-22 18:52:02
On Regularization of Linear Equations on the Basis of Perturbation Theory,In this Section some known results (see, for example, Vainberg and Trenogin , Keldysh ) of Jordan chains and sets of linear operators are given. Suitable techniques of this theory is being used here to study and develop the LyapunovSchmidt methods with uniform point of view.
密码
发表于 2025-3-22 21:48:40
Investigation of Bifurcation Points of a Nonlinear Equations,Consider the equation.where . be nonlinear operator, . : . × . → . be real Banach spaces, . is a real parameter, . ∈ ., . is a finite or infinite interval of the real axis
流浪
发表于 2025-3-23 02:05:56
http://reply.papertrans.cn/59/5892/589176/589176_9.png
semble
发表于 2025-3-23 08:14:50
http://reply.papertrans.cn/59/5892/589176/589176_10.png