要求 发表于 2025-3-21 20:01:54
书目名称Locally Conformal Kähler Geometry影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0587762<br><br> <br><br>书目名称Locally Conformal Kähler Geometry读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0587762<br><br> <br><br>Throttle 发表于 2025-3-21 23:44:57
http://reply.papertrans.cn/59/5878/587762/587762_2.png过于光泽 发表于 2025-3-22 04:01:20
http://reply.papertrans.cn/59/5878/587762/587762_3.png衍生 发表于 2025-3-22 04:41:55
http://reply.papertrans.cn/59/5878/587762/587762_4.pngEncephalitis 发表于 2025-3-22 10:39:08
http://reply.papertrans.cn/59/5878/587762/587762_5.pngirreducible 发表于 2025-3-22 15:59:16
0743-1643 Overview: . E C, 0 < 1>‘1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.978-1-4612-7387-5978-1-4612-2026-8Series ISSN 0743-1643 Series E-ISSN 2296-505XMOTIF 发表于 2025-3-22 19:51:33
L.c.K. Manifolds,In this chapter we state several equivalent definitions of the notion of a locally conformal Kähler manifold and study the elementary emerging properties.DEMN 发表于 2025-3-23 01:16:20
http://reply.papertrans.cn/59/5878/587762/587762_8.png改变立场 发表于 2025-3-23 03:27:28
Distributions on a g.H. manifold,One of the purposes of this chapter is to study of some naturally occurring distributions on a l.c.K. manifold, which exhibit particular geometric properties when the Lee form is parallel.Indecisive 发表于 2025-3-23 06:28:16
Structure theorems,The results in this chapter describe the structure of Vaisman manifolds whose foliations D.and D.⊕ D.are regular.