Inflamed 发表于 2025-3-23 13:01:41

Textbook 2011eader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate

庄严 发表于 2025-3-23 14:54:56

http://reply.papertrans.cn/59/5876/587596/587596_12.png

humectant 发表于 2025-3-23 20:39:26

Normal Forms,riable which “improves” locally a nonlinear system, in order to more easily recognize its dynamics. As we shall see, normal form transformations apply to general classes of nonlinear systems in ℝ. near a fixed point, here the origin, by just assuming a certain smoothness of the vector field. In part

Individual 发表于 2025-3-24 00:05:16

http://reply.papertrans.cn/59/5876/587596/587596_14.png

enchant 发表于 2025-3-24 03:45:07

Applications, Chapter 3, and the results on reversible bifurcations in Chapter 4. We discuss hydrodynamic instabilities arising in the Navier–Stokes equations in Section 5.1, and we consider in Section 5.2 the question of existence of traveling waves for three different situations: the water-wave problem; reacti

匍匐 发表于 2025-3-24 09:02:26

http://reply.papertrans.cn/59/5876/587596/587596_16.png

发芽 发表于 2025-3-24 12:16:40

http://reply.papertrans.cn/59/5876/587596/587596_17.png

cornucopia 发表于 2025-3-24 16:34:43

http://reply.papertrans.cn/59/5876/587596/587596_18.png

远足 发表于 2025-3-24 19:45:38

https://doi.org/10.1007/978-0-85729-112-7bifurcations; center manifold reduction; infinite dimensional dynamical systems; normal forms; travellin

Pantry 发表于 2025-3-24 23:11:16

http://reply.papertrans.cn/59/5876/587596/587596_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems; Mariana Haragus,Gérard Iooss Textbook 20