introspective 发表于 2025-3-21 17:28:43
书目名称Local Algebra影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0587588<br><br> <br><br>书目名称Local Algebra读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0587588<br><br> <br><br>sed-rate 发表于 2025-3-21 22:39:19
Springer Monographs in Mathematicshttp://image.papertrans.cn/l/image/587588.jpg颂扬本人 发表于 2025-3-22 01:32:36
978-3-642-08590-1Springer-Verlag Berlin Heidelberg 2000佛刊 发表于 2025-3-22 06:51:09
http://reply.papertrans.cn/59/5876/587588/587588_4.png议程 发表于 2025-3-22 09:13:09
Prime Ideals and Localization,This chapter summarizes standard results in commutative algebra. For more details, see , Chap. II, III, IV.有毛就脱毛 发表于 2025-3-22 16:06:45
Dimension Theory,Let . be a ring (commutative, with a unit element).Control-Group 发表于 2025-3-22 21:02:35
http://reply.papertrans.cn/59/5876/587588/587588_7.pngABIDE 发表于 2025-3-23 00:48:59
Multiplicities,In this section, . is a commutative noetherian ring; all .-modules are assumed to be finitely generated.柱廊 发表于 2025-3-23 02:25:13
http://reply.papertrans.cn/59/5876/587588/587588_9.pngCAND 发表于 2025-3-23 06:22:55
Book 2000riginal text was based on a set of lectures, given at the College de France in 1957-1958, and written up by Pierre Gabriel. Its aim was to give a short account of Commutative Algebra, with emphasis on the following topics: a) Modules (as opposed to Rings, which were thought to be the only subject of