Accolade 发表于 2025-3-23 10:34:53

http://reply.papertrans.cn/59/5865/586416/586416_11.png

嬉耍 发表于 2025-3-23 15:53:23

http://reply.papertrans.cn/59/5865/586416/586416_12.png

鲁莽 发表于 2025-3-23 20:29:35

Kodissipative Metrische Projektionen in Normierten Linearen RäumenLet H be a real inner product space with inner product <.,.>. For any subset K of H the metric projection P.:H → P(K) is monotone, i.e., for any (x,k), (x’,k’) ∈P. < k-k’,x-x’ > ≥ 0. This property is used to characterize closed convex sets in Hilbert space.

神圣在玷污 发表于 2025-3-23 23:32:49

http://reply.papertrans.cn/59/5865/586416/586416_14.png

战胜 发表于 2025-3-24 04:12:57

http://reply.papertrans.cn/59/5865/586416/586416_15.png

护身符 发表于 2025-3-24 09:30:45

http://reply.papertrans.cn/59/5865/586416/586416_16.png

高度 发表于 2025-3-24 12:10:17

http://reply.papertrans.cn/59/5865/586416/586416_17.png

ARK 发表于 2025-3-24 16:25:41

http://reply.papertrans.cn/59/5865/586416/586416_18.png

冥界三河 发表于 2025-3-24 20:11:35

Kernel Operatorsfrom L. to L. (1<p≤∞) is a kernel operator (for the special case of Lebesgue measure in the real line due to N. Dunford, 1936); in Buhvalov’s approach this corollary is proved first and the other abovementioned results are derived from it.

Interim 发表于 2025-3-25 03:07:04

Conference proceedings 1978n Theory‘, conducted by P. L. Butzer (Aachen) and J. Korevaar (Amsterdam). Since that auspicious beginning, others of the Oberwolfach proceedings have appeared in Birkhauser‘s ISNM series. The present volume is the fifth * edited at Aachen in collaboration with an external institution. It once again
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Linear Spaces and Approximation / Lineare Räume und Approximation; Proceedings of the C P. L. Butzer,B. Szökefalvi-Nagy Conference proceedi