BID 发表于 2025-3-21 16:08:27

书目名称Linear Algebra影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0586239<br><br>        <br><br>书目名称Linear Algebra读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0586239<br><br>        <br><br>

不成比例 发表于 2025-3-21 20:34:14

http://reply.papertrans.cn/59/5863/586239/586239_2.png

星星 发表于 2025-3-22 02:06:48

http://reply.papertrans.cn/59/5863/586239/586239_3.png

epicardium 发表于 2025-3-22 05:54:56

http://reply.papertrans.cn/59/5863/586239/586239_4.png

品牌 发表于 2025-3-22 12:34:01

Jordan Canonical Forms,s true in computing the power ., in solving a linear difference equation . = . or a linear differential equation .′(.) = .(.). In this chapter, we discuss how to solve the same problems for a non-diagonalizable matrix A by introducing the Jordan canonical form of a square matrix.

使成整体 发表于 2025-3-22 15:55:02

http://reply.papertrans.cn/59/5863/586239/586239_6.png

宣传 发表于 2025-3-22 18:57:17

https://doi.org/10.1007/978-0-8176-8194-4Eigenvalue; Eigenvector; Matrix; Transformation; algebra; computer; computer science; linear algebra; matrix

修改 发表于 2025-3-22 21:26:40

http://reply.papertrans.cn/59/5863/586239/586239_8.png

CLAN 发表于 2025-3-23 05:22:06

http://reply.papertrans.cn/59/5863/586239/586239_9.png

侵害 发表于 2025-3-23 08:01:40

Inner Product Spaces,To study a geometry ofa vector space, we go back to the case ofthe 3-space ℝ..
页: [1] 2 3 4 5
查看完整版本: Titlebook: Linear Algebra; Jin Ho Kwak,Sungpyo Hong Textbook 2004Latest edition Springer Science+Business Media New York 2004 Eigenvalue.Eigenvector.