重婚 发表于 2025-3-21 19:03:25
书目名称Lie Groups, Lie Algebras, and Representations影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0585705<br><br> <br><br>书目名称Lie Groups, Lie Algebras, and Representations读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0585705<br><br> <br><br>比目鱼 发表于 2025-3-21 21:59:34
http://reply.papertrans.cn/59/5858/585705/585705_2.png符合你规定 发表于 2025-3-22 03:19:37
http://reply.papertrans.cn/59/5858/585705/585705_3.png自负的人 发表于 2025-3-22 04:45:47
http://reply.papertrans.cn/59/5858/585705/585705_4.png等级的上升 发表于 2025-3-22 12:37:50
The Baker–Campbell–Hausdorff Formula and Its Consequencessociated Lie algebra notion. In this chapter, we attempt to go in the “hard” direction, from the Lie algebra to the Lie group. We will investigate three questions relating to the preceding three theorems.项目 发表于 2025-3-22 14:16:49
Semisimple Lie Algebrasally, in Chapter 10, we consider several additional properties of the representations constructed in Chapter 9. Meanwhile, in Chapters 11 and 12, we consider representation theory from the closely related viewpoint of compact Lie groups.控制 发表于 2025-3-22 19:50:23
The Representations ofresult of this chapter is Theorem ., which states that an irreducible finite-dimensional representation of . can be classified in terms of its “highest weight.” This result is analogous to the results of Sect. ., in which we classify the irreducible representations by the largest eigenvalue of .(.), namely the non-negative integer ..有说服力 发表于 2025-3-22 22:47:34
http://reply.papertrans.cn/59/5858/585705/585705_8.png投票 发表于 2025-3-23 01:48:34
978-3-319-37433-8Springer International Publishing Switzerland 2015个人长篇演说 发表于 2025-3-23 09:37:34
http://reply.papertrans.cn/59/5858/585705/585705_10.png