弄碎 发表于 2025-3-21 18:24:29

书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0583602<br><br>        <br><br>书目名称Lectures on Sphere Arrangements – the Discrete Geometric Side读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0583602<br><br>        <br><br>

格子架 发表于 2025-3-21 20:45:49

Fields Institute Monographshttp://image.papertrans.cn/l/image/583602.jpg

ABOUT 发表于 2025-3-22 03:14:45

https://doi.org/10.1007/978-1-4614-8118-8Schramm‘s lower bound; The Kneser–Poulsen theorem; ball-polyhedra; contractions of sphere arrangements;

黄瓜 发表于 2025-3-22 04:55:09

Contractions of Sphere Arrangements,res. The research on this fundamental topic started with the conjecture of E. T. Poulsen and M. Kneser in the late 1950s. In this chapter we survey the status of the long-standing Kneser–Poulsen conjecture in Euclidean as well as in non-Euclidean spaces.

招募 发表于 2025-3-22 09:25:30

Proofs on Contractions of Sphere Arrangements,r dimensional. Second, we prove an analogue of the Kneser–Poulsen conjecture for hemispheres in spherical .-space. Third, we give a proof of a Kneser–Poulsen-type theorem for convex polyhedra in hyperbolic 3-space.

BATE 发表于 2025-3-22 12:55:19

Coverings by Cylinders, question and its variants continue to generate interest in the geometric and analytic aspects of coverings by cylinders in the present time as well. This chapter surveys plank theorems, covering convex bodies by cylinders, Kadets–Ohmann-type theorems and investigates partial coverings of balls by planks.

BLOT 发表于 2025-3-22 18:53:58

Proofs on Coverings by Cylinders,we prove a lower estimate for the sum of the cross-sectional volumes of cylinders covering a convex body in Euclidean .-space. Then we prove a Kadets–Ohmann-type theorem in spherical .-space for coverings of balls by convex bodies via volume maximizing lunes. Finally, we give estimates for partial coverings of balls by planks in Euclidean .-space.

LAVE 发表于 2025-3-22 21:41:20

http://reply.papertrans.cn/59/5837/583602/583602_8.png

称赞 发表于 2025-3-23 03:24:11

http://reply.papertrans.cn/59/5837/583602/583602_9.png

合乎习俗 发表于 2025-3-23 08:23:03

http://reply.papertrans.cn/59/5837/583602/583602_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Lectures on Sphere Arrangements – the Discrete Geometric Side; Károly Bezdek Book 2013 Springer International Publishing Switzerland 2013