Conflict
发表于 2025-3-28 17:36:37
Lecture 2: The Kantorovich Problem,We can now introduce Kantorovich’s formulation of the optimal transport problem. It involves the concept of . (also called coupling in the Probability literature) between probability measures. In the discrete setting of Example ., transport plans correspond to bi-stochastic matrices.
颠簸下上
发表于 2025-3-28 20:37:48
http://reply.papertrans.cn/59/5836/583557/583557_42.png
地壳
发表于 2025-3-28 23:55:47
http://reply.papertrans.cn/59/5836/583557/583557_43.png
范围广
发表于 2025-3-29 05:47:45
http://reply.papertrans.cn/59/5836/583557/583557_44.png
抗生素
发表于 2025-3-29 09:30:37
http://reply.papertrans.cn/59/5836/583557/583557_45.png
玩笑
发表于 2025-3-29 14:40:32
http://reply.papertrans.cn/59/5836/583557/583557_46.png
Seizure
发表于 2025-3-29 18:29:59
Lecture 9: Analysis on Metric Spaces and the Dynamic Formulation of Optimal Transport,In this section we introduce basic notions and tools of analysis on metric spaces. We begin by defining the property of absolute continuity for curves . : [., .] → ., with (., .) a metric space, and we prove structural properties of this family of curves.
Anthem
发表于 2025-3-29 21:47:06
Lecture 10: Wasserstein Geodesics, Nonbranching and Curvature,Let us now come to the proof of the lower semicontinuity of the action, defined as in (.). The proof could be achieved with more elementary tools, but we prefer to use a general lemma that will play a role also in the sequel.
罐里有戒指
发表于 2025-3-30 03:13:37
http://reply.papertrans.cn/59/5836/583557/583557_49.png
预定
发表于 2025-3-30 06:54:37
http://reply.papertrans.cn/59/5836/583557/583557_50.png