Conflict 发表于 2025-3-28 17:36:37
Lecture 2: The Kantorovich Problem,We can now introduce Kantorovich’s formulation of the optimal transport problem. It involves the concept of . (also called coupling in the Probability literature) between probability measures. In the discrete setting of Example ., transport plans correspond to bi-stochastic matrices.颠簸下上 发表于 2025-3-28 20:37:48
http://reply.papertrans.cn/59/5836/583557/583557_42.png地壳 发表于 2025-3-28 23:55:47
http://reply.papertrans.cn/59/5836/583557/583557_43.png范围广 发表于 2025-3-29 05:47:45
http://reply.papertrans.cn/59/5836/583557/583557_44.png抗生素 发表于 2025-3-29 09:30:37
http://reply.papertrans.cn/59/5836/583557/583557_45.png玩笑 发表于 2025-3-29 14:40:32
http://reply.papertrans.cn/59/5836/583557/583557_46.pngSeizure 发表于 2025-3-29 18:29:59
Lecture 9: Analysis on Metric Spaces and the Dynamic Formulation of Optimal Transport,In this section we introduce basic notions and tools of analysis on metric spaces. We begin by defining the property of absolute continuity for curves . : [., .] → ., with (., .) a metric space, and we prove structural properties of this family of curves.Anthem 发表于 2025-3-29 21:47:06
Lecture 10: Wasserstein Geodesics, Nonbranching and Curvature,Let us now come to the proof of the lower semicontinuity of the action, defined as in (.). The proof could be achieved with more elementary tools, but we prefer to use a general lemma that will play a role also in the sequel.罐里有戒指 发表于 2025-3-30 03:13:37
http://reply.papertrans.cn/59/5836/583557/583557_49.png预定 发表于 2025-3-30 06:54:37
http://reply.papertrans.cn/59/5836/583557/583557_50.png