大小
发表于 2025-3-21 19:51:07
书目名称Lectures on Formal and Rigid Geometry影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0583511<br><br> <br><br>书目名称Lectures on Formal and Rigid Geometry读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0583511<br><br> <br><br>
一骂死割除
发表于 2025-3-21 22:44:31
http://reply.papertrans.cn/59/5836/583511/583511_2.png
beta-cells
发表于 2025-3-22 01:28:13
978-3-319-04416-3Springer International Publishing Switzerland 2014
不容置疑
发表于 2025-3-22 07:54:19
http://reply.papertrans.cn/59/5836/583511/583511_4.png
废止
发表于 2025-3-22 10:47:22
https://doi.org/10.1007/978-3-319-04417-0Formal blowing-up; Formal scheme; Rigid analytic space; Tate algebra; Tate‘s Acyclicity Theorem
alcoholism
发表于 2025-3-22 16:45:01
Introduction,Classical rigid geometry may be viewed as a theory of analytic functions over local fields or, more generally, over fields that are complete under a non-Archimedean absolute value. For example, for any prime ., the .-adic numbers constitute such a field.
N防腐剂
发表于 2025-3-22 20:56:23
Tate AlgebrasThe Tate algebra over a complete non-Archimedean field ., say in a set of . variables, consists of all formal power series whose coefficients form a zero sequence in .. In the present chapter we develop Weierstraß Theory and use it to prove basic properties of Tate algebras.
杠杆支点
发表于 2025-3-22 23:26:47
http://reply.papertrans.cn/59/5836/583511/583511_8.png
背书
发表于 2025-3-23 03:31:19
http://reply.papertrans.cn/59/5836/583511/583511_9.png
AGONY
发表于 2025-3-23 07:24:15
http://reply.papertrans.cn/59/5836/583511/583511_10.png