Ford 发表于 2025-3-21 18:46:35

书目名称Learning, Networks and Statistics影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0583043<br><br>        <br><br>书目名称Learning, Networks and Statistics读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0583043<br><br>        <br><br>

伪造 发表于 2025-3-22 00:19:37

0254-1971 llustrated in problems dealing with neural nets, statistics and networks, classification and data mining, and (machine) learning.978-3-211-82910-3978-3-7091-2668-4Series ISSN 0254-1971 Series E-ISSN 2309-3706

勤勉 发表于 2025-3-22 04:02:50

Overtraining in Single-Layer Perceptrons for a given situation depends on the number of features, data size and its configuration. In order to obtain a wider range of classifiers in non-linear SLP training, several new complexity control procedures are suggested.

lanugo 发表于 2025-3-22 05:38:12

http://reply.papertrans.cn/59/5831/583043/583043_4.png

mechanical 发表于 2025-3-22 11:49:13

A General Framework for Supporting Relational Concept Learningal disjunction; such a construct, first used by the AQ and Induce systems, is here made operational via a set of algorithms, capable to learn it, for both the discrete and the continuous-valued attributes case. These algorithms are embedded in learning systems using different paradigms, such as symbolic, genetic or connectionist ones.

烦忧 发表于 2025-3-22 14:20:51

http://reply.papertrans.cn/59/5831/583043/583043_6.png

IRK 发表于 2025-3-22 17:21:11

Fuzzy Shell Cluster Analysisn of the data set. Subsequently therefore we review the main ideas of unsupervised fuzzy shell cluster analysis. Finally we present an application of unsupervised fuzzy shell cluster analysis in computer vision.

plasma 发表于 2025-3-23 00:16:34

http://reply.papertrans.cn/59/5831/583043/583043_8.png

动物 发表于 2025-3-23 01:35:16

http://reply.papertrans.cn/59/5831/583043/583043_9.png

CHAR 发表于 2025-3-23 09:28:42

http://reply.papertrans.cn/59/5831/583043/583043_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Learning, Networks and Statistics; Giacomo Riccia,Hans-Joachim Lenz,Rudolf Kruse Conference proceedings 1997 Springer-Verlag Wien 1997 alg