Causalgia 发表于 2025-3-21 18:43:23

书目名称Learning to Rank for Information Retrieval and Natural Language Processing影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0583011<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval and Natural Language Processing读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0583011<br><br>        <br><br>

把手 发表于 2025-3-22 00:11:06

Learning to Rank for Information Retrieval and Natural Language Processing978-3-031-02141-1Series ISSN 1947-4040 Series E-ISSN 1947-4059

exercise 发表于 2025-3-22 00:25:12

http://reply.papertrans.cn/59/5831/583011/583011_3.png

猜忌 发表于 2025-3-22 04:47:34

Learning for Ranking Aggregation,le ranking, which is better than any of the original rankings in terms of an evaluation measure. Learning for ranking aggregation is about building a ranking model for ranking aggregation using machine learning techniques.

optional 发表于 2025-3-22 12:31:26

Methods of Learning to Rank,ank , RankNet , LambdaRank , ListNet & ListMLE , AdaRank , SVM MAP , and SoftRank , and three methods for ranking aggregation, including Borda Count , Markov Chain , and CRanking .

Tonometry 发表于 2025-3-22 14:00:09

Applications of Learning to Rank,ocument retrieval, expert search, definition search, meta-search, personalized search, online advertisement, collaborative filtering, question answering, key phrase extraction, document summarization, and machine translation.

Alienated 发表于 2025-3-22 17:30:16

http://reply.papertrans.cn/59/5831/583011/583011_7.png

Recess 发表于 2025-3-22 23:59:30

http://reply.papertrans.cn/59/5831/583011/583011_8.png

细颈瓶 发表于 2025-3-23 04:14:52

Synthesis Lectures on Human Language Technologieshttp://image.papertrans.cn/l/image/583011.jpg

FISC 发表于 2025-3-23 07:14:27

http://reply.papertrans.cn/59/5831/583011/583011_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Learning to Rank for Information Retrieval and Natural Language Processing; Hang Li Book 2011 Springer Nature Switzerland AG 2011