frustrate 发表于 2025-3-21 16:32:39

书目名称Learning from Data Streams in Evolving Environments影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0582934<br><br>        <br><br>书目名称Learning from Data Streams in Evolving Environments读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0582934<br><br>        <br><br>

旧石器时代 发表于 2025-3-21 21:23:20

Transfer Learning in Non-stationary Environments,line transfer learning in non-stationary environments. A brief summary of the results achieved by these approaches in the literature is presented, highlighting the benefits of integrating these two fields. As the first work to provide a detailed discussion of the relationship between transfer learni

animated 发表于 2025-3-22 04:28:21

http://reply.papertrans.cn/59/5830/582934/582934_3.png

碎石 发表于 2025-3-22 07:07:15

Error-Bounded Approximation of Data Stream: Methods and Theories,near-time algorithms are introduced to construct error-bounded piecewise linear representation for data stream. One generates the line segments by data convex analysis, and the other one is based on the transformed space, which can be extended to a general model. We theoretically analyzed and compar

Acquired 发表于 2025-3-22 11:58:30

http://reply.papertrans.cn/59/5830/582934/582934_5.png

tenuous 发表于 2025-3-22 13:54:02

http://reply.papertrans.cn/59/5830/582934/582934_6.png

财主 发表于 2025-3-22 17:26:02

http://reply.papertrans.cn/59/5830/582934/582934_7.png

ostensible 发表于 2025-3-22 22:38:09

Efficient Estimation of Dynamic Density Functions with Applications in Data Streams,timating the Probability Density Function (PDF) of the stream at a set of resampling points. KDE-Track is shown to be more accurate (as reflected by smaller error values) and more computationally efficient (as reflected by shorter running time) when compared with existing density estimation techniqu

Lymphocyte 发表于 2025-3-23 04:33:08

http://reply.papertrans.cn/59/5830/582934/582934_9.png

Firefly 发表于 2025-3-23 09:20:50

http://reply.papertrans.cn/59/5830/582934/582934_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Learning from Data Streams in Evolving Environments; Methods and Applicat Moamar Sayed-Mouchaweh Book 2019 Springer International Publishin