审美家
发表于 2025-3-21 19:53:58
书目名称Lattice Theory: Special Topics and Applications影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0581945<br><br> <br><br>书目名称Lattice Theory: Special Topics and Applications读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0581945<br><br> <br><br>
招致
发表于 2025-3-21 22:15:37
http://reply.papertrans.cn/59/5820/581945/581945_2.png
来自于
发表于 2025-3-22 02:00:09
http://reply.papertrans.cn/59/5820/581945/581945_3.png
郊外
发表于 2025-3-22 04:48:27
http://reply.papertrans.cn/59/5820/581945/581945_4.png
CANDY
发表于 2025-3-22 11:34:03
Convex Geometries,ion of convexity. Similarly, the theory of matroids is a combinatorial abstraction of independent sets; see the survey of B. Dietrich . Since both abstractions can be formulated in the framework of a closure operator on a finite set, one can associate with a convex geometry or a matroid the clo
Adj异类的
发表于 2025-3-22 13:11:29
Bases of Closure Systems,nical forms of representations of a closure system by implications. Most of the results are inspired by the structure of the closure lattice and its properties. In particular, we will be concerned with effective representations of closure systems whose closure lattices are join-semidistributive, low
JAUNT
发表于 2025-3-22 20:49:11
http://reply.papertrans.cn/59/5820/581945/581945_7.png
眉毛
发表于 2025-3-22 22:06:51
http://reply.papertrans.cn/59/5820/581945/581945_8.png
Aggregate
发表于 2025-3-23 03:52:21
Finite Coxeter Groups and the Weak Order,nts to this chapter: First, to show how the geometry and lattice theory of hyperplane arrangements underlies the theory of finite Coxeter groups, and second, to point out the weak orders on finite Coxeter groups as an important class of lattice-theoretic examples. A broader class of examples is obta
Electrolysis
发表于 2025-3-23 06:45:05
http://reply.papertrans.cn/59/5820/581945/581945_10.png