transient-pain 发表于 2025-3-25 07:16:22
http://reply.papertrans.cn/59/5814/581346/581346_21.png高尔夫 发表于 2025-3-25 11:23:53
http://reply.papertrans.cn/59/5814/581346/581346_22.png滔滔不绝地讲 发表于 2025-3-25 13:07:53
Concentration inequalities for random matricesf random matrices. To this end, we shall first study the regularity of the eigenvalues of matrices as a function of their entries (since the idea will be to apply concentration inequalities to the entries of the random matrices and then see the eigenvalues as nice functions of these entries).Harbor 发表于 2025-3-25 18:40:18
http://reply.papertrans.cn/59/5814/581346/581346_24.pngMortal 发表于 2025-3-25 22:12:15
http://reply.papertrans.cn/59/5814/581346/581346_25.png手势 发表于 2025-3-26 02:55:10
Large deviations for the law of the spectral measure of Gaussian Wigner’s matricesumber ?. Here, ?(?) = ?.(?. ? ?. )..When .(x) = 4.?x., we have seen in Lemma IV that . is the law of the eigenvalues of an . ×. GOE (resp. GUE, resp GSE) matrix when ? = 1 (resp. ? = 2, resp. ? = 4). The case ? = 4 corresponds to another matrix ensemble, namely the GSE. In view of these remarks and我要威胁 发表于 2025-3-26 06:56:33
http://reply.papertrans.cn/59/5814/581346/581346_27.png易弯曲 发表于 2025-3-26 11:12:51
http://reply.papertrans.cn/59/5814/581346/581346_28.png紧张过度 发表于 2025-3-26 16:03:49
http://reply.papertrans.cn/59/5814/581346/581346_29.pngFELON 发表于 2025-3-26 17:09:07
Maps and Gaussian calculusWe start this chapter by introducing non-commutative polynomials and their relations with special vertices called stars. We then relate the enumeration of the maps buildt upon such vertices with the formal expansion of Gaussian matrix integrals.