小客车 发表于 2025-3-21 16:41:15
书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0543931<br><br> <br><br>书目名称Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0543931<br><br> <br><br>foodstuff 发表于 2025-3-21 22:52:06
https://doi.org/10.1007/978-981-99-7224-1artificial intelligence; computational linguistics; computer networks; data mining; databases; graph theo使更活跃 发表于 2025-3-22 00:49:49
http://reply.papertrans.cn/55/5440/543931/543931_3.pngHangar 发表于 2025-3-22 04:43:04
Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence978-981-99-7224-1Series ISSN 1865-0929 Series E-ISSN 1865-0937猛烈责骂 发表于 2025-3-22 12:25:22
Dynamic Weighted Neural Bellman-Ford Network for Knowledge Graph Reasoninggraphs to compute only the most relevant relations and entities. This way, we can integrate multiple reasoning paths more flexibly to achieve better interpretable reasoning, while scaling more easily to more complex and larger KGs. DyNBF consists of two key modules: 1) a transformer-based relation w坦白 发表于 2025-3-22 13:03:04
Exploring the Logical Expressiveness of Graph Neural Networks by Establishing a Connection with for the handling of both unary and binary predicates in . formulas. We prove that the proposed models possess the same expressiveness as .. Through experiments conducted on synthetic and real datasets, we validate that our proposed models outperform both ACR-GNN and a widely-used model, GIN, in the挑剔小责 发表于 2025-3-22 18:18:10
http://reply.papertrans.cn/55/5440/543931/543931_7.png过于平凡 发表于 2025-3-23 00:33:16
Relation Repository Based Adaptive Clustering for Open Relation Extractionon boundary, which lead to generate cluster-friendly relation representations to improve the effect of open relation extraction. Experiments on two public datasets show that our method can effectively improve the performance of open relation extraction.Statins 发表于 2025-3-23 01:40:09
http://reply.papertrans.cn/55/5440/543931/543931_9.pngimpale 发表于 2025-3-23 07:02:47
Multi-Perspective Frame Element Representation for Machine Reading Comprehensiondemonstrate that our proposed model outperforms existing state-of-the-art methods. The superiority of our approach highlights its potential for advancing the field of MRC and showcasing the importance of properly modeling FEs for better semantic understanding.