metabolism 发表于 2025-3-21 17:21:25
书目名称Key Digital Trends Shaping the Future of Information and Management Science影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0542556<br><br> <br><br>书目名称Key Digital Trends Shaping the Future of Information and Management Science读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0542556<br><br> <br><br>良心 发表于 2025-3-21 23:57:30
Lecture Notes in Networks and Systemshttp://image.papertrans.cn/k/image/542556.jpgCHYME 发表于 2025-3-22 02:13:25
http://reply.papertrans.cn/55/5426/542556/542556_3.pngAllure 发表于 2025-3-22 05:49:58
http://reply.papertrans.cn/55/5426/542556/542556_4.pngNeonatal 发表于 2025-3-22 10:36:04
http://reply.papertrans.cn/55/5426/542556/542556_5.pngcacophony 发表于 2025-3-22 15:35:35
Improvisation of Predictive Modeling Using Different Classifiers for Predicting Thyroid Disease inthe mis-classification rate is nearly negligible. The main aim of study is to explore the various classification algorithms like k-NN, Random Forest Classifier, XGBoost Classifier and CatBoost Classifier and improvise the models using hyper-parameter optimization to obtain optimum accuracy in prediintercede 发表于 2025-3-22 17:49:21
http://reply.papertrans.cn/55/5426/542556/542556_7.png有助于 发表于 2025-3-22 23:37:59
http://reply.papertrans.cn/55/5426/542556/542556_8.pngcontrast-medium 发表于 2025-3-23 02:56:25
http://reply.papertrans.cn/55/5426/542556/542556_9.png令人悲伤 发表于 2025-3-23 06:00:48
http://reply.papertrans.cn/55/5426/542556/542556_10.png