草率女 发表于 2025-3-25 04:57:40
iology and other functional domains. We discern three routes for arriving at a unified account: literally applying the ICE-theory to the other functional domains, taking non-technical functions as ‘as-if’ ICE-technical-functions, and generalising the ICE-theory to the other domains. We argue that thFACT 发表于 2025-3-25 11:10:42
http://reply.papertrans.cn/55/5424/542320/542320_22.png入伍仪式 发表于 2025-3-25 15:23:21
http://reply.papertrans.cn/55/5424/542320/542320_23.png草率男 发表于 2025-3-25 17:27:31
http://reply.papertrans.cn/55/5424/542320/542320_24.pngACE-inhibitor 发表于 2025-3-25 22:56:17
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa百科全书 发表于 2025-3-26 02:29:30
http://reply.papertrans.cn/55/5424/542320/542320_26.pngAcclaim 发表于 2025-3-26 05:41:03
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementapester 发表于 2025-3-26 10:51:33
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing敌手 发表于 2025-3-26 13:20:57
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing不利 发表于 2025-3-26 19:25:20
Einleitung,tigsten halte. Gegenüber der ersten Auflage ist ein Kapitel über Integrale hinzu gekommen, welches mit „Messen“ überschrieben ist. Neben den Kapiteln 2 bis 9, mit denen man in vielen anderen Fachgebieten sowie in zahlreichen Bereichen des täglichen Lebens direkt etwas „anfangen“ kann (weil man dort