草率女
发表于 2025-3-25 04:57:40
iology and other functional domains. We discern three routes for arriving at a unified account: literally applying the ICE-theory to the other functional domains, taking non-technical functions as ‘as-if’ ICE-technical-functions, and generalising the ICE-theory to the other domains. We argue that th
FACT
发表于 2025-3-25 11:10:42
http://reply.papertrans.cn/55/5424/542320/542320_22.png
入伍仪式
发表于 2025-3-25 15:23:21
http://reply.papertrans.cn/55/5424/542320/542320_23.png
草率男
发表于 2025-3-25 17:27:31
http://reply.papertrans.cn/55/5424/542320/542320_24.png
ACE-inhibitor
发表于 2025-3-25 22:56:17
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
百科全书
发表于 2025-3-26 02:29:30
http://reply.papertrans.cn/55/5424/542320/542320_26.png
Acclaim
发表于 2025-3-26 05:41:03
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
pester
发表于 2025-3-26 10:51:33
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
敌手
发表于 2025-3-26 13:20:57
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
不利
发表于 2025-3-26 19:25:20
Einleitung,tigsten halte. Gegenüber der ersten Auflage ist ein Kapitel über Integrale hinzu gekommen, welches mit „Messen“ überschrieben ist. Neben den Kapiteln 2 bis 9, mit denen man in vielen anderen Fachgebieten sowie in zahlreichen Bereichen des täglichen Lebens direkt etwas „anfangen“ kann (weil man dort