hazard 发表于 2025-3-23 10:22:07
http://reply.papertrans.cn/55/5415/541446/541446_11.png外貌 发表于 2025-3-23 17:09:19
http://reply.papertrans.cn/55/5415/541446/541446_12.pngPAC 发表于 2025-3-23 18:47:14
http://reply.papertrans.cn/55/5415/541446/541446_13.png北极人 发表于 2025-3-24 00:29:58
http://reply.papertrans.cn/55/5415/541446/541446_14.png磨坊 发表于 2025-3-24 02:58:18
Josef Kowarschikf the abstract foundations of Grothendieck duality theory for schemes (twisted inverse image, tor-independent base change,...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of reDefense 发表于 2025-3-24 07:58:57
http://reply.papertrans.cn/55/5415/541446/541446_16.png葡萄糖 发表于 2025-3-24 12:44:35
Josef Kowarschikf the abstract foundations of Grothendieck duality theory for schemes (twisted inverse image, tor-independent base change,...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of remultiply 发表于 2025-3-24 18:47:15
http://reply.papertrans.cn/55/5415/541446/541446_18.png就职 发表于 2025-3-24 21:03:42
Josef Kowarschikduality theory for schemes (twisted inverse image, tor-independent base change,...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of relations among the derived functors, for unb边缘带来墨水 发表于 2025-3-25 02:46:39
http://reply.papertrans.cn/55/5415/541446/541446_20.png