遗产
发表于 2025-3-25 04:32:28
http://reply.papertrans.cn/48/4744/474389/474389_21.png
他去就结束
发表于 2025-3-25 09:07:18
Some Classes of Solutions,r triangular solutions is made. The results of Section 2.11.2 are placed in a theoretical context. We apply some of the techniques developed in earlier chapters in Section 8.6.1 to find some one-parameter QYBE solutions.
ALB
发表于 2025-3-25 11:39:52
http://reply.papertrans.cn/48/4744/474389/474389_23.png
黑豹
发表于 2025-3-25 19:26:32
http://reply.papertrans.cn/48/4744/474389/474389_24.png
我不死扛
发表于 2025-3-25 23:28:19
http://reply.papertrans.cn/48/4744/474389/474389_25.png
opportune
发表于 2025-3-26 01:57:17
978-1-4613-6842-7Springer Science+Business Media Dordrecht 1997
知识
发表于 2025-3-26 08:15:41
http://reply.papertrans.cn/48/4744/474389/474389_27.png
燕麦
发表于 2025-3-26 08:40:28
nd should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in in one form or a
Limousine
发表于 2025-3-26 16:05:18
http://reply.papertrans.cn/48/4744/474389/474389_29.png
generic
发表于 2025-3-26 16:57:28
The Quantum Yang-Baxter Equation (QYBE), conditions in the constant case is based on and . Our treatment of symmetries inSection 2.3 is based on . From this point on in the text we will refer to the quantum Yang-Baxter equation as the QYBE.