Limbic-System 发表于 2025-3-21 18:07:43

书目名称Introduction to the Geometry of Foliations, Part B影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0474361<br><br>        <br><br>书目名称Introduction to the Geometry of Foliations, Part B读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0474361<br><br>        <br><br>

PET-scan 发表于 2025-3-21 20:42:42

978-3-528-08568-1Springer Fachmedien Wiesbaden 1983

Abjure 发表于 2025-3-22 02:40:31

http://reply.papertrans.cn/48/4744/474361/474361_3.png

混乱生活 发表于 2025-3-22 07:04:11

http://reply.papertrans.cn/48/4744/474361/474361_4.png

使迷醉 发表于 2025-3-22 12:03:26

Basic Constructions and Examples,To begin with we prove the existence of a one-dimensional transverse foliation F. for any foliation (M,F) of codimension one. Of course, the existence of F. is not evident only when F is of class c°.

不透明 发表于 2025-3-22 13:36:26

http://reply.papertrans.cn/48/4744/474361/474361_6.png

VEN 发表于 2025-3-22 17:02:21

http://reply.papertrans.cn/48/4744/474361/474361_7.png

解开 发表于 2025-3-23 00:38:25

Growth,The notion of growth was studied originally in the context of riemannian geometry. Several authors, among them Bishop, Milnor and Wolf, established relations between the mean curvature of a complete riemannian manifold and the growth of its fundamental group; see ,, .

HEW 发表于 2025-3-23 04:51:07

http://reply.papertrans.cn/48/4744/474361/474361_9.png

奴才 发表于 2025-3-23 08:05:58

http://reply.papertrans.cn/48/4744/474361/474361_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Introduction to the Geometry of Foliations, Part B; Foliations of Codime Gilbert Hector,Ulrich Hirsch Book 1983 Springer Fachmedien Wiesbad