Limbic-System 发表于 2025-3-21 18:07:43
书目名称Introduction to the Geometry of Foliations, Part B影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0474361<br><br> <br><br>书目名称Introduction to the Geometry of Foliations, Part B读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0474361<br><br> <br><br>PET-scan 发表于 2025-3-21 20:42:42
978-3-528-08568-1Springer Fachmedien Wiesbaden 1983Abjure 发表于 2025-3-22 02:40:31
http://reply.papertrans.cn/48/4744/474361/474361_3.png混乱生活 发表于 2025-3-22 07:04:11
http://reply.papertrans.cn/48/4744/474361/474361_4.png使迷醉 发表于 2025-3-22 12:03:26
Basic Constructions and Examples,To begin with we prove the existence of a one-dimensional transverse foliation F. for any foliation (M,F) of codimension one. Of course, the existence of F. is not evident only when F is of class c°.不透明 发表于 2025-3-22 13:36:26
http://reply.papertrans.cn/48/4744/474361/474361_6.pngVEN 发表于 2025-3-22 17:02:21
http://reply.papertrans.cn/48/4744/474361/474361_7.png解开 发表于 2025-3-23 00:38:25
Growth,The notion of growth was studied originally in the context of riemannian geometry. Several authors, among them Bishop, Milnor and Wolf, established relations between the mean curvature of a complete riemannian manifold and the growth of its fundamental group; see ,, .HEW 发表于 2025-3-23 04:51:07
http://reply.papertrans.cn/48/4744/474361/474361_9.png奴才 发表于 2025-3-23 08:05:58
http://reply.papertrans.cn/48/4744/474361/474361_10.png