infection 发表于 2025-3-21 17:45:21
书目名称Introduction to the Galois Correspondence影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0474359<br><br> <br><br>书目名称Introduction to the Galois Correspondence读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0474359<br><br> <br><br>POWER 发表于 2025-3-21 20:32:51
http://reply.papertrans.cn/48/4744/474359/474359_2.pngnegligence 发表于 2025-3-22 02:04:54
,Preliminaries — Groups and Rings,eft as exercises, the majority of the proofs in the first two sections are presented fully as we guide the student through the process of studying groups via their normal subgroups and quotient groups.Gudgeon 发表于 2025-3-22 05:43:09
,Preliminaries — Groups and Rings,tary theory of groups and rings, concentrating on examples that will be used in later chapters. Although some of the more straightforward proofs are left as exercises, the majority of the proofs in the first two sections are presented fully as we guide the student through the process of studying gro实现 发表于 2025-3-22 09:39:39
http://reply.papertrans.cn/48/4744/474359/474359_5.pngPLAYS 发表于 2025-3-22 13:49:37
978-1-4612-7285-4Springer Science+Business Media New York 1998CEDE 发表于 2025-3-22 19:33:26
The Galois Correspondence, extension of . and . has characteristic 0, then . = [.] and there is a one-to-one, order reversing correspondence between the set of intermediate fields of the extension . and the set of subgroups of . We will then show that this correspondence also preserves normality.Exaggerate 发表于 2025-3-22 22:10:46
http://reply.papertrans.cn/48/4744/474359/474359_8.pngoptional 发表于 2025-3-23 02:01:46
http://reply.papertrans.cn/48/4744/474359/474359_9.png杀人 发表于 2025-3-23 09:30:48
http://reply.papertrans.cn/48/4744/474359/474359_10.png