美丽动人 发表于 2025-3-21 16:44:44

书目名称Introduction to Time Series and Forecasting影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0474281<br><br>        <br><br>书目名称Introduction to Time Series and Forecasting读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0474281<br><br>        <br><br>

弯曲的人 发表于 2025-3-21 23:55:07

Springer Nature Switzerland AG 2016

音的强弱 发表于 2025-3-22 00:49:24

http://reply.papertrans.cn/48/4743/474281/474281_3.png

Meditate 发表于 2025-3-22 06:25:43

ARMA Models,In this chapter we introduce an important parametric family of stationary time series, the autoregressive moving-average, or ARMA, processes. For a large class of autocovariance functions .(⋅ ) it is possible to find an ARMA process {..} with ACVF ..(⋅ ) such that .(⋅ ) is well approximated by ..(⋅ ).

myocardium 发表于 2025-3-22 09:58:17

Nonstationary and Seasonal Time Series Models,In this chapter we shall examine the problem of finding an appropriate model for a given set of observations {.., ., ..} that are not necessarily generated by a stationary time series.

讲个故事逗他 发表于 2025-3-22 16:54:36

http://reply.papertrans.cn/48/4743/474281/474281_6.png

GUISE 发表于 2025-3-22 19:38:37

Multivariate Time Series,ependence within each component series {..} but also interdependence between the different component series {..} and {..}, . ≠ .. Much of the theory of univariate time series extends in a natural way to the multivariate case; however, new problems arise.

subordinate 发表于 2025-3-22 22:27:19

Peter J. Brockwell,Richard A. DavisDesigned for use in full-year courses introducing univariate and multivariate time series and forecasting at the advanced undergraduate and graduate levels.Exercise problems at the end of each chapter

奇思怪想 发表于 2025-3-23 05:08:49

http://reply.papertrans.cn/48/4743/474281/474281_9.png

Pigeon 发表于 2025-3-23 09:31:06

Spectral Analysis,ess, which for some applications may be more illuminating. For example, in the design of a structure subject to a randomly fluctuating load, it is important to be aware of the presence in the loading force of a large sinusoidal component with a particular frequency to ensure that this is not a reson
页: [1] 2 3 4 5
查看完整版本: Titlebook: Introduction to Time Series and Forecasting; Peter J. Brockwell,Richard A. Davis Textbook 2016Latest edition Springer Nature Switzerland A