骚动 发表于 2025-3-23 12:31:51
http://reply.papertrans.cn/48/4743/474268/474268_11.pngMORT 发表于 2025-3-23 15:19:53
http://reply.papertrans.cn/48/4743/474268/474268_12.pngSchlemms-Canal 发表于 2025-3-23 18:16:52
http://reply.papertrans.cn/48/4743/474268/474268_13.pngetiquette 发表于 2025-3-24 00:36:45
The Chevet-Saphar Tensor Products,tion of a tensor norm. We then investigate the Chevet-Saphar tensor norms, .. and ... The dual spaces of the corresponding tensor products lead us to the definition of the .-summing operators. We conclude with the fundamental Grothendieck Inequality and some of its applications.Aboveboard 发表于 2025-3-24 04:56:14
http://reply.papertrans.cn/48/4743/474268/474268_15.pngdetach 发表于 2025-3-24 07:38:38
978-1-84996-872-0Springer-Verlag London 2002必死 发表于 2025-3-24 14:12:25
Introduction to Tensor Products of Banach Spaces978-1-4471-3903-4Series ISSN 1439-7382 Series E-ISSN 2196-9922blight 发表于 2025-3-24 18:19:11
http://reply.papertrans.cn/48/4743/474268/474268_18.pngJAUNT 发表于 2025-3-24 19:22:56
Springer Monographs in Mathematicshttp://image.papertrans.cn/i/image/474268.jpg赞美者 发表于 2025-3-25 01:15:15
Tensor Products,s. We explain how the tensor product can be seen as a “linearizing space” for bilinear mappings. Tensors can also be viewed as bilinear forms, or as linear mappings and we explore the connections between these ideas. In finite dimensions, tensor products provide a means of understanding the duality