骚动
发表于 2025-3-23 12:31:51
http://reply.papertrans.cn/48/4743/474268/474268_11.png
MORT
发表于 2025-3-23 15:19:53
http://reply.papertrans.cn/48/4743/474268/474268_12.png
Schlemms-Canal
发表于 2025-3-23 18:16:52
http://reply.papertrans.cn/48/4743/474268/474268_13.png
etiquette
发表于 2025-3-24 00:36:45
The Chevet-Saphar Tensor Products,tion of a tensor norm. We then investigate the Chevet-Saphar tensor norms, .. and ... The dual spaces of the corresponding tensor products lead us to the definition of the .-summing operators. We conclude with the fundamental Grothendieck Inequality and some of its applications.
Aboveboard
发表于 2025-3-24 04:56:14
http://reply.papertrans.cn/48/4743/474268/474268_15.png
detach
发表于 2025-3-24 07:38:38
978-1-84996-872-0Springer-Verlag London 2002
必死
发表于 2025-3-24 14:12:25
Introduction to Tensor Products of Banach Spaces978-1-4471-3903-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
blight
发表于 2025-3-24 18:19:11
http://reply.papertrans.cn/48/4743/474268/474268_18.png
JAUNT
发表于 2025-3-24 19:22:56
Springer Monographs in Mathematicshttp://image.papertrans.cn/i/image/474268.jpg
赞美者
发表于 2025-3-25 01:15:15
Tensor Products,s. We explain how the tensor product can be seen as a “linearizing space” for bilinear mappings. Tensors can also be viewed as bilinear forms, or as linear mappings and we explore the connections between these ideas. In finite dimensions, tensor products provide a means of understanding the duality