厌氧 发表于 2025-3-21 19:24:03

书目名称Introduction to Stokes Structures影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0474236<br><br>        <br><br>书目名称Introduction to Stokes Structures读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0474236<br><br>        <br><br>

Radiation 发表于 2025-3-21 20:47:40

http://reply.papertrans.cn/48/4743/474236/474236_2.png

preservative 发表于 2025-3-22 01:55:59

The Riemann–Hilbert Correspondence for Holonomic ,-Modules on Curvesperverse sheaves. It is induced from a functor at the derived category level which is compatible with .-structures. Given a discrete set . in ., we first define the functor from the category of .-modules which are holonomic and have regular singularities away from . to that of Stokes-perverse sheave

含沙射影 发表于 2025-3-22 06:01:51

Applications of the Riemann–Hilbert Correspondence to Holonomic Distributionsis also holonomic. As an application, we make explicit the local expression of a holonomic distribution, that is, a distribution on . (in Schwartz’ sense) which is solution to a nonzero holomorphic differential equation on .. The conclusion is that working with . objects hides the Stokes phenomenon.

高歌 发表于 2025-3-22 10:26:20

Riemann–Hilbert and Laplace on the Affine Line (the Regular Case). provides the simplest example of an irregular singularity (at infinity). We will describe the Stokes-filtered local system attached to . at infinity in terms of data of .. More precisely, we define the topological Laplace transform of the perverse sheaf . as a perverse sheaf on . equipped with a S

Analogy 发表于 2025-3-22 14:49:41

Real Blow-Up Spaces and Moderate de Rham Complexes is defined the sheaf of holomorphic functions with moderate growth, whose basic properties are analyzed. The moderate de Rham complex of a meromorphic connection is introduced, and its behaviour under the direct image by a proper modification is explained. This chapter ends with an example of a mod

Detoxification 发表于 2025-3-22 18:24:55

http://reply.papertrans.cn/48/4743/474236/474236_7.png

袭击 发表于 2025-3-22 21:55:34

The Riemann–Hilbert Correspondence for Good Meromorphic Connections (Case of a Smooth Divisor)t to the parameters. This is the meaning of the goodness condition in the present setting. We will have to treat the Riemann–Hilbert functor in a more invariant way, and more arguments will be needed in the proof of the main result (equivalence of categories) in order to make it global with respect

CHECK 发表于 2025-3-23 01:30:37

http://reply.papertrans.cn/48/4743/474236/474236_9.png

Interlocking 发表于 2025-3-23 05:56:01

Irregular Nearby Cyclesbraic case. We give a new proof of this theorem when the support of the holonomic .-module has dimension two, which holds in the complex analytic setting and which makes more precise the non-vanishing nearby cycles.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Introduction to Stokes Structures; Claude Sabbah Book 2013 Springer-Verlag Berlin Heidelberg 2013 34M40, 32C38, 35A27.Meromorphic connecti