Monomania 发表于 2025-3-21 17:42:51

书目名称Introduction to Quadratic Forms影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0474089<br><br>        <br><br>书目名称Introduction to Quadratic Forms读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0474089<br><br>        <br><br>

表主动 发表于 2025-3-21 20:58:12

http://reply.papertrans.cn/48/4741/474089/474089_2.png

tic-douloureux 发表于 2025-3-22 03:39:14

0072-7830 Overview: 978-3-662-41922-9Series ISSN 0072-7830 Series E-ISSN 2196-9701

使迷惑 发表于 2025-3-22 07:08:06

Hilbert’s Reciprocity LawThe Hilbert Reciprocity Law states that ..

EWER 发表于 2025-3-22 11:55:21

Integral Theory of Quadratic Forms over Local FieldsThis chapter classifies quadratic forms under integral equivalence over local fields..

腐败 发表于 2025-3-22 16:00:07

http://reply.papertrans.cn/48/4741/474089/474089_6.png

Amnesty 发表于 2025-3-22 18:25:43

http://reply.papertrans.cn/48/4741/474089/474089_7.png

Confound 发表于 2025-3-22 22:48:07

https://doi.org/10.1007/978-3-662-41922-9algebra; group theory; mathematics; quadratic form

BUOY 发表于 2025-3-23 04:23:04

Quadratic Forms over Dedekind Domainse present chapter is to state the nature of this problem in modern terminology and in the general setting of an arbitrary Dedekind domain. Our second purpose is to develop some technique in this general situation. The more interesting results must wait until we specialize to the fields of number theory.

ventilate 发表于 2025-3-23 05:54:22

Valuated Fieldsnumber theory, and topology. Strictly speaking the topological considerations are just of a conceptual nature and in fact only the most elementary results on metric spaces and topological groups will be used; nevertheless these considerations are essential to the point of view taken throughout this chapter and indeed throughout the entire book.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Introduction to Quadratic Forms; O. T. O’Meara Book 1973Latest edition Springer-Verlag Berlin Heidelberg 1973 algebra.group theory.mathema