Indolent 发表于 2025-3-25 06:33:45
https://doi.org/10.1007/978-3-319-04150-6Block Matrix; Cramér–Rao Inqualtity; Eigenvalue; Entropy; Functional Calculus; Hilbert Space; Jordan Canondefibrillator 发表于 2025-3-25 09:12:01
978-3-319-04149-0Hindustan Book Agency 2014GAVEL 发表于 2025-3-25 14:24:31
http://reply.papertrans.cn/48/4739/473886/473886_23.png装勇敢地做 发表于 2025-3-25 18:35:14
http://reply.papertrans.cn/48/4739/473886/473886_24.pngpulmonary-edema 发表于 2025-3-25 20:47:13
http://reply.papertrans.cn/48/4739/473886/473886_25.pngMonolithic 发表于 2025-3-26 02:57:31
http://reply.papertrans.cn/48/4739/473886/473886_26.png铺子 发表于 2025-3-26 07:20:33
http://reply.papertrans.cn/48/4739/473886/473886_27.png食草 发表于 2025-3-26 12:20:10
Functional Calculus and Derivation,Let . and . be a polynomial. It is quite obvious that by . we mean the matrix .. So the functional calculus is trivial for polynomials.machination 发表于 2025-3-26 14:34:51
Matrix Monotone Functions and Convexity,Let . be an interval. A function . is said to be monotone for . matrices if . whenever . and . are self-adjoint . matrices, . and their eigenvalues are in .. If a function is monotone for every matrix size, then it is called . or ..嬉耍 发表于 2025-3-26 19:48:04
http://reply.papertrans.cn/48/4739/473886/473886_30.png