ectropion 发表于 2025-3-30 09:48:53
Igor Kriz,Aleš Pultrsationsentwicklung verschränkt. Dass Personalentwicklung bedeutsam für die Entwicklung des Unternehmens ist, ist inzwischen konsensfähig und bedarf keiner ausführlichen Erklärung. Inwieweit dann aber wirklich Ressourcen (finanzielle und personelle) eingesetzt werden, um Personalentwicklung konsequen新奇 发表于 2025-3-30 16:09:52
http://reply.papertrans.cn/48/4739/473865/473865_52.pngeczema 发表于 2025-3-30 17:35:50
Metric and Topological Spaces Ihe purpose of this chapter. We will see that studying these concepts in detail will really pay off in the chapters below. While studying metric spaces, we will discover certain concepts which are independent of metric, and seem to beg for a more general context. This is why, in the process, we will introduce . as well.acclimate 发表于 2025-3-30 21:36:02
Integration I: Multivariable Riemann Integral and Basic Ideas Toward the Lebesgue IntegralSection 8 of Chapter 1). To start with, we will consider the integral only for functions defined on .-dimensional intervals ( = “bricks”) and we will be concerned, basically, with continuous functions. Later, the domains and functions to be integrated on will become much more general.Altitude 发表于 2025-3-31 04:46:23
http://reply.papertrans.cn/48/4739/473865/473865_55.pngEngaging 发表于 2025-3-31 07:07:54
http://reply.papertrans.cn/48/4739/473865/473865_56.png抑制 发表于 2025-3-31 12:41:38
http://image.papertrans.cn/i/image/473865.jpg业余爱好者 发表于 2025-3-31 13:25:27
Multivariable Differential CalculusIn this chapter, we will learn multivariable differential calculus. We will develop the multivariable versions of the concept of a derivative, and prove the Implicit Function Theorem. We will also learn how to use derivatives to find extremes of multivariable functions.Forehead-Lift 发表于 2025-3-31 20:30:33
Line Integrals and Green’s TheoremIn this chapter, we introduce the line integral and prove Green’s Theorem which relates a line integral over a closed curve (or curves) in . to the ordinary integral of a certain quantity over the region enclosed by the curve(s).crumble 发表于 2025-4-1 01:45:36
Metric and Topological Spaces IIFor the remaining chapters of this text, we must revisit our foundations. Specifically, it is time to upgrade our knowledge of both metric and topological spaces. For example, in the upcoming discussion of manifolds in ., we will need separability. We will need a characterization of compactness by properties of open covers.